首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A systematic study on the corrosion and passivation behavior of AZ91D alloy in relation to the influence of concentration, temperature, pH, and immersion time was made in aqueous sulfate solution using electrochemical techniques including open-circuit potential, potentiodynamic polarization and impedance spectroscopy. It was found that the corrosion and pitting potentials (E corr and E pit) of the alloy drift to more active values with increasing either concentration (0.01–1.0 M) or temperature (278–338 K) of the test solution, suggesting that sulfate solution enhances the alloy dissolution, particularly at higher temperatures. On the other hand, values of the total film resistance (R T) indicate that neutral solution (pH 7.0) supports the formation of a better protective layer on AZ91D surface than alkaline (pH 12.5) or acidic (pH 1.0) medium. The growth of a protective film on the alloy surface at short immersion times (up to ∼50 h) is evinced by a rapid positive evolution of E corr and fast decrease in the corrosion rate (i corr). However, for a long-term exposure (up to 500 h) E corr drifts negatively and i corr increases due to breakdown of the protective film, which causes a decrease in the alloy stability. Fitting the impedance data to equivalent circuit models suitable to each behavior assisted to explore the mechanism for the attack of the sample surface at various testing times. The results obtained from the three studied electrochemical techniques are in good agreement.  相似文献   

2.
The inhibitory activity of caffeine (1,3,7-trimethyl xanthine) on artificial saliva was studied on a CoCrMo alloy using different electrochemical methods: open circuit potential (OCP), potentiodynamic measurements and electrochemical impedance spectroscopy (EIS). The results show that caffeine produces an inhibitory effect on the anodic currents due to its adsorption on the surface of the alloy. Temperature is another parameter with an influence on corrosion processes, so thermodynamic data were obtained from Arrhenius plots and Langmuir adsorption isotherms. The protective action of caffeine is enhanced at high temperatures at OCP, while for potentiodynamic experiments high temperatures block the inhibitory activity of caffeine and the corrosion rate increases. The process may also be studied by a simulation, determining the functional dependence between OCP, corrosion current density (i corr), corrosion potential (E corr), breakdown potential (E bd) and temperature and amount of caffeine in artificial saliva, for Heraenium® CE. The neural network-based methodology applied in this work provides accurate results, thus proving to be an efficient modelling technique.  相似文献   

3.
Potentiodynamic sweep and electrochemical impedance spectroscopy measurements were applied to investigate the effects of both temperature and acetic acid (HAc) on the anodic and cathodic reactions in CO2 corrosion of P110 steel in 3.5% NaCl solution. The temperatures were controlled at 30 and 60 °C. The concentrations of HAc were controlled at 0, 1000, 3000 and 5000 ppm. In this work, the corrosion parameters of polarization curves, such as corrosion potential (Ecorr), corrosion current density (icorr), and anodic and cathodic branch slopes (ba and bc), are presented and discussed in detail. In addition, the equivalent circuit models and ZsimpWin software were utilized to discuss the Nyquist plots. The plots showed that the Ecorr values shifted in the positive direction as the HAc concentration increased. The icorr values increased with the increase in HAc concentration, indicating that HAc could accelerate the corrosion. The impedance spectra measured at 30 and 60 °C have different time constants and characterization. The coverage fraction θ and the thickness L of corrosion film are two most important controlled variables that influence and control the CO2 corrosion mechanisms. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The corrosion inhibition of aluminum and its alloys is the subject of tremendous technological importance due to the increased industrial applications of these materials. This study reports the results of potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) on the corrosion inhibition of AA6061 aluminum alloys in seawater using sodium benzoate as an inhibitor. The electrochemical measurements for aluminum alloys in seawater after varied immersion period showed that the presence of sodium benzoate significantly decreases the corrosion currents densities (icorr), corrosion rates and double layer capacitance (Cdl), as simultaneously increase the values of polarization resistance (Rp). Charge transfer process and development of thin film on the specimen have been proven by morphology study using SEM.  相似文献   

5.
Plasma transferred arc cladding process was used to fabricate CoNiCuFeCr multi-element alloys coatings. The experimental results show that the coating forms a face-centered-cubic solid solution phase. The microstructure of the coating is mainly composed of dendrite and discontinuous interdendritic segregation. The average hardness of the coating reaches 194.8 HV100. The nano-indentation testing indicates that the micro-hardness and elastic modulus of the coating are 3.64 GPa and 211 GPa, respectively. The CoNiCuFeCr high-entropy alloy coating has excellent wear and corrosion resistance. The wear resistance of the coating is about 1.7 times higher than that of Q235 steel substrate under the same wet sand rubber wheel abrasion testing conditions. In 1N hydrochloric acid solution, the coating presents lower i corr values in polarization curves and higher fitted R f values in EIS plots than that of as-cast 304 stainless steel.  相似文献   

6.
The effect of iR drop on the corrosion rates obtained by curve fitting of the polarisation data around the corrosion potential is an increase in the corrosion current calculated, which is in direct contrast to linear polarisation measurements. The ba values and, for an activation-controlled cathodic process the bc values, are increased by added ohmic resistance, Ru. This more than offsets the increase in Rp and so the icorr increases. For a diffusion-controlled cathodic process the bc becomes negative with added Ru. All the results are not unduly affected by up to ±2% random error. A current-interrupt method of iR correction has been used for steel corroding in a deaerated H2SO4 solution to demonstrate the effect of iR correction.  相似文献   

7.
This investigation potentiodynamically evaluates the corrosion behavior of a high strength titanium alloy, VT-9, in 4 M sulfuric acid solution containing different concentrations (10, 20, 30 ppm) of the organic inhibitor, 2-phenyl-4-[(E)-1-(4-sulfanylanilino)methylidene]-1,3-oxazole-5(4H)-one (L-SH), at different temperatures (293, 303 and 313 ± 1 K). The open circuit potential values noted before and after each experiment varied appreciably with time. These values, in the presence of L-SH, were negative before polarization, but after completion of the experiment turned positive and remained stable over a long period of time. The cathodic current density values increased with increasing cathodic potential (more negative). The corrosion potential (Ecorr) increased remarkably with the addition of L-SH. The corrosion current densities (Icorr), critical current density (Icr), and passive current density (Ip) all decreased when L-SH was used. However, only the decrease in the Icorr with increasing amounts of inhibitor was significant compared to that of Icr and Ip. L-SH expanded the range of the passive potential. SEM micrographs and open circuit potential measurements revealed the formation of a uniform and protective film on the alloy surface in the presence of L-SH, which acted as an efficient inhibitor.  相似文献   

8.
A simple experimental arrangement was applied for the measurement and the evaluation of pitting corrosion currents operating under natural conditions. The feasibility of the procedure was examined by using Zn as a test metal, K2CrO4, Na2HPO4 and Na2WO4 as inhibitors, and Cl?, Br? and I? as pitting corrosion agents. Both the type and concentration of the inhibiting and corroding agents were varied in a programmed manner. In CrO42? and HPO42? solutions, the pitting corrosion currents started to flow after an induction period, which decreased with increase in the concentration of the attacking agent. In WO42? solutions, on the other hand, initially high currents were recorded due to the reduction of the agent to soluble, non-inhibiting species.In all solutions tested the corrosion current reached steady-state values which depended on the type and concentration of both the inhibiting and the aggressive anions. When keeping the inhibitor concentration constant, the corrosion current varied with the concentration of the aggressor according to: log icorr = a1 + b1 log cagg On the other hand, in solutions of constant aggressor concentration, with varying inhibitor amounts, the relation was: log icorr = a2 ? b2 log cinh where a1(a2) and b1(b2) are constants.The two equations were derived theoretically on the basis of competitive adsorption of the two counteracting agents on the surface of the metal. Comparison between the experimental values of a and b, with the corresponding terms of the theoretical equations was made.The aggressivity of the three tested anions decreases in the order Cl? > Br? > I?, whilst inhibition varied as CrO42? > HPO42? > WO42?.  相似文献   

9.
The Cu–P and Cu–P–SiC composite coatings on carbon steel substrates were deposited via electroless plating. The anti-corrosion properties of Cu–P and Cu–P–SiC coatings were studied in 3.5% NaCl solution. The anti-corrosion properties of Cu–P and Cu–P–SiC coatings were investigated in 3.5% NaCl solution by the weight loss, potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) techniques. It has been found that the shift in the corrosion potential (Ecorr) towards the noble direction, decrease in the corrosion current density (Icorr), increase in the charge transfer resistance (Rct) and decrease in the double layer capacitance (Cdl) values indicated an improvement in corrosion resistance with the incorporation of SiC particles in the Cu–P matrix. The effects of varying the SiC concentration on the corrosion resistance of carbon steel were investigated and it was found that the best anti-corrosion property of Cu–P–SiC is at 5 g L?1 SiC in the bath formulation.  相似文献   

10.
The aim of the present work was to investigate electrochemical behavior of the Ti6Al7Nb alloy in the simulated body fluid (SBF) containing Ca2+, HCO3 ?, and HPO4 2? ions. At first, optimal conditions necessary for oxide nanotube formation were determined. The experiments were conducted in the 1 M (NH4)2SO4 with 0.5 wt% NH4F electrolyte at room temperature. Anodization of the alloy samples was carried out under variable external voltage U in the range from 10 to 40 V at room temperature. Obtained surface morphology was examined by SEM and X-ray techniques. Nanotube diameter was calculated and correlated with the imposed voltage. Having control over the size of nanotubes, samples with the obtained nanostructures of a chosen diameter were immersed into SBF solution with pH = 7.4 for a fixed period of time. Then, they were removed from the fluid and subjected to the electrochemical investigation. Corrosion current and corrosion potential were determined, and it was found that the best anticorrosion properties were obtained for heat-treated nanotube layer: i corr = 39 nA/cm2 and E corr = ?0.236 V vs Ag/AgCl. Finally, the interaction between the oxide surface and the solution was studied using polarization and electrochemical impedance spectroscopy (EIS) techniques.  相似文献   

11.
In the first part of this work, based on silsesquioxanes (SSO) derived from hydrolytic condensation of (3-methacryloxypropyl)trimethoxysilane (MPMS) and tetraethoxysilane (TEOS), two hybrid films, f-MPMS-SSO (f-MS) and f-MPMS-TEOS-SSO (f-MTS) modified with 15 wt% TEOS, were prepared. The anticorrosion properties (corrosion potential, E corr, and corrosion current density, I corr) of the bare aluminum alloy (AA) and the two films on AA were tested by electrochemical measurements with typical potentiodynamic polarization curves. The I corr values of three samples are significantly different with the order of f-MTS < f-MS < AA which implies that the TEOS addition in the f-MTS coating indeed enhances the electrochemical corrosion resistance. Correlations between the structures of two films and anticorrosion properties were discussed. In the second part of this work, two different 3D-amorphous cubic unit cells, cell(f-MS) and cell(f-MTS), as models were employed to investigate self-diffusion coefficients by molecular dynamics (MD) simulation for the NO2, SO2 and H2O molecules. All three self-diffusion coefficients of NO2, SO2 and H2O diffusing in cell(f-MTS) were less than the coefficients in cell(f-MS), which validates the corresponding anticorrosion-experiment results. Two reasons why the addition of TEOS in the system of f-MTS leads to a lowering of the gas self-diffusion coefficient compared to the f-MS system, were discussed. An erratum to this article can be found at  相似文献   

12.
The electrochemical and passivation properties of three selected binary xSn? Ag (x = 26, 50 and 70 wt%) alloys were studied by means of open‐circuit potential variation, potentiodynamic curves and a.c. impedance spectroscopy techniques.The specimens were polarized between ?1.0 and 0.5 V versus saturated calomel electrode (SCE) in naturally oxygenated sulfuric acidsolutions of different concentrations The experimental results indicate that icorr increases with increasing either the acid concentration or the Sn content in the solid phase. Electrochemical impedance spectroscopyresults measured at the free corrosion potential confirm that alloy I (26Sn? Ag) characterizes by thicker passive film with higher protective ability compared to the other two samples richer in tin component. The exponential variation of the relative thickness of the surface film on any of the tested samples assumes an almost constant thickness for a thin barrier layer and a much larger outer porous layer that dominates the total film thickness on the alloy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The present study demonstrated microbial corrosion protection of MS 1010 on cooling tower water using plant-based inhibitors derived from methanolic extraction of dry mangrove leaves (R.mangle and A.marina), and its assessment of antibacterial activity against corrosive bacteria (B.megaterium) was investigated. FT-IR and GC–MS analyzed the inhibitors component and corrosion behavior of MS 1010 on cooling water, with and without inhibitors were analyzed by EIS and Tafel studies. GC–MS spectra confirmed the presence of Myo-Inositol, 4-C-methyl and chromene as major constituents presented on the R.mangle whereas Lupeol, trifluoroacetate and beta-amyrin compounds were found on the A.marina. In the cooling water, these two inhibitors demonstrated outstanding antibacterial activity and controlled biofilm growth. As plant-based inhibitors were used in cooling water systems, EIS data showed a significant increase in Rct value when compared to the control system. Tafel plot indicates inhibitors have mixed inhibitory effects and for the systems with and without inhibitors, the icorr value was 1.5649A and 2.0875A, respectively. At the optimal dose of 25 ppm, the inhibitory efficiency of MERM and MEAM was 81% and 80%, respectively. The overall discussion reveals that inhibitor substances can be absorbed on the metal surface and then act as a dual role in inhibiting corrosive bacterial growth and barrier to the corrosion process in the cooling water system.  相似文献   

14.
The Ta coating with corrosion resistance is grown on the γ‐TiAl substrate by double‐glow plasma surface metallurgy technique, followed by the electrochemical test in 10 wt%, 20 wt% HCl and 10 wt%, 40 wt% H2SO4 solution. The data of nanohardness and elastic modulus are collected by the nanoindention test. The adhesion strength of Ta coating is investigated by means of the scratch test. The study of corrosion resistance is performed using potentiodynamic polarization and electrochemical impedance spectroscopy and measured by SEM and X‐ray diffraction. Results highlight that the Ta coating is tightly bonded to the γ‐TiAl substrate, consisting of the deposition layer and diffusion layer. Experimental data indicate that the Ta coating presents excellent corrosion resistance, which is confirmed by the high values of polarization resistance (Rp) and the low values of corrosion current density (icorr). The surface nanohardness of the Ta coating is improved from 3.41 to 7.29 GPa, nearly twice of that of the substrate. The Ta2O5 formed on the coating is able to hold back the penetration of adverse ions inwardly, owing to its dense structure and adhesion effect. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
In this study, a protective Ni–Co alloy coating was prepared on sintered NdFeB magnet applying electrodeposition technique. A pure nickel coating was also studied for a comparison. The microstructure, surface morphologies, and chemical composition of coatings were investigated using X-ray diffraction, scanning electron microscope, and energy dispersive spectroscopy, respectively. The corrosion protection properties of coatings for NdFeB magnet in neutral 3.5 wt.% NaCl solutions were evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The microstructure and surface morphologies analysis showed that the addition of cobalt element into matrix metal Ni altered the preferential orientation of pure nickel coating from (2 0 0) crystal face for pure nickel coating to (1 1 1) crystal face for Ni–Co alloy coating, and made the surface morphologies more compact and uniform due to the grain-refining. The results of potentiodynamic polarization test showed that compared with pure nickel coating, Ni–Co alloy coating exhibited much nobler corrosion potential (E corr) and lower corrosion current density (j corr), indicating better anticorrosive properties. The long-term immersion test by dint of EIS indicated that the Ni–Co alloy coating still presented high impedance value of 1.9 × 105 Ω cm2 with the immersion time of 576 h indicating the excellent anticorrosive properties, and corrosion protection properties of nickel coating for NdFeB magnet practically disappeared with the immersion time of 144 h, which also indicated that the Ni–Co alloy coating provided better corrosion protection properties for the NdFeB magnet compared with nickel coating.  相似文献   

16.
利用电化学阻抗谱(EIS)、半电池腐蚀电位(Ecorr)和宏观电池腐蚀电流密度(Icorr)测量技术,在饱和NaCl溶液浸泡的硬化混凝土试块中,研究了4种醇胺基阻锈剂对钢筋电极腐蚀电化学行为的影响和长期阻锈性能.在浸泡初始的100d内,与空白样相比,添加阻锈剂后钢筋电极腐蚀电位升高,阻抗膜值增大,腐蚀电流密度值降低,表明电极表面处于钝态,阻锈剂表现出良好的阻锈性能.随浸泡时间延长,电极腐蚀电位和阻抗膜值下降,腐蚀电流密度增大.浸泡后期,除添加醇胺基CI-4样外,电极电位和腐蚀电流密度与空白样相比无明显差别,表明电极由钝态转变为活性腐蚀状态.但添加CI-4样品,钢筋电极始终保持在钝化状态,阻锈性能最好.基于阻锈剂与Cl-间的竞争吸附,分析探讨了可能的阻锈机理.  相似文献   

17.
The effects of mechanical grinding/polishing, surface roughness, and near‐surface deformation on the electrochemical corrosion behavior of thermally treated (TT) Alloy 690 were studied in a sodium chloride solution. The X‐ray photoelectron spectroscopy and transmission electron microscopy analyses revealed that mechanical grinding/polishing can change the ratio of the elements at the surface of the as‐received Alloy 690TT specimen by removing its Cr‐rich outer layer and causing deformation at the near‐surface microstructure, something which has a direct impact on the rate of the oxygen reduction reaction (ORR), the pitting potential (Epit), and the corrosion potential (Ecorr) of Alloy 690TT. It was observed that the ratio of Cr in the surface is a significant factor that controls the rate of the ORR and the corrosion parameters such as Ecorr. Higher amounts of Cr at the surface accelerate the ORR. The near‐surface deformation shifts the Epit values towards less positive potentials. It was also found that due to the different near‐surface chemical composition of the as‐received Alloy 690TT specimen compared with the ground and the polished specimens, the surface roughness parameters do not have a regular correlation with the rate of the ORR and the values of the Ecorr and the Epit. Only the passive current density increases when the surface roughness is increased. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The focus of this study consists of examining how simultaneous SR-XRD and electrochemical measurements can provide information on the effectiveness of stabilization and storage treatments of copper artefacts in aqueous solution. The electrochemical cell used here was designed for in situ, time resolved SR-XRD studies of corrosion and inhibition studies on cultural heritage materials. Key objectives of the new cell were to monitor corrosion layers on alloys with realistic metallographic structures and to obtain co-incident, time resolved, electrochemical data such as reduction measurements, oxidation measurements and corrosion potential (Ecorr) measurements. Here we present some early results from the cell. Firstly, a correlated SR-XRD and corrosion potential (Ecorr) study of the reduction of nantokite during storage in sodium sesquicarbonate, which shows that the surface chemistry continues to change after Ecorr has stabilized. Secondly, the use of X-ray data to identify specific changes occurring as a function of potential in the forced reduction of a more complex system.  相似文献   

19.
The passivation of two high strength duplex stainless steels (HSSS) was investigated in alkaline solutions simulating the pore solution of concrete by the growth of natural and induced passive films. Induced passive films were generated both by cyclic voltammetry and by chronoamperometry. Natural passive films were spontaneously grown by the immersion of the steel in the alkaline electrolyte. These passive layers were characterised by electrochemical impedance spectroscopy, corrosion current density (i corr) and corrosion potential (E corr) monitoring. The effect of significant parameters, such as the pH in the HSSS/alkaline solution interface, the composition of the duplex stainless steels and the ageing of the passive layer, on the electrochemical performance of both induced and spontaneously grown passive films has been analysed. The increase of alkalinity highly influences the electrochemical performance of the passive film by promoting the formation of a passive layer with a less resistant electrochemical response. The electrochemical behaviour of the passive layer is also affected by the alloying elements like Mo or Ni. Both natural and induced passive films show similar electrochemical trend with respect to significant parameters such as the pH and the composition of the steel. The ageing of the spontaneously grown passive layer promotes a higher resistive electrochemical response which might be related to the enrichment of the passive layer in non-conducting (or semi-conducting) oxides.  相似文献   

20.
Electrochemical methods were used to study the characteristics of corrosion process for the high-strength low-alloy steel and carbon steel used as a huge oil storage tank in NaHSO3 solution. The polarization curve results show that both steel samples take place in active solution, and the high-strength low-alloy (HSLA) steel has higher i corr value than carbon steel, which is due to the small grain size that provides high density of active sites for preferential attack. The electrochemical impedance spectroscopy (EIS) results make known that the corrosion process presents two stages. In the first 136 h, one-time constant in EIS diagrams can be shown. Both steels have similar corrosion resistance due to the combination effects of the grain size and microstructure. After 240 h of immersion, a complete passive film forms on the specimen surface, and two-time constants can be shown in EIS diagram. The HSLA steel exhibited improved corrosion resistance when compared with the carbon steel, which is due to the effect of the shape Fe3C in microstructure and the deposition of FeSO4 on the electrode surface. The scanning electrode microscopy analyses show that both steels take place in homogenous corrosion, and the carbon steel shows higher surface roughness and many Fe3C residues. XRD results show that both steels have similar phase constitutes of corrosion products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号