首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 65 毫秒
1.
We introduce the difference in quantum mutual information for a bipartite system of qubits and the minimum taken with respect to the local unitary transformation group as a characteristic of quantum correlations of the system tomographic mutual information. We study in detail the example of two qubits and the X state of two qubits.  相似文献   

2.
We investigate the transient spontaneous quantum synchronization between two qubits interacting with a common non-Markovian environment based on a collision model. We are mainly interested in the effect of non-Markovianity on the synchronization between two qubits. We find that the non-Markovianity always delay the anti-synchronization and decrease the parameter region where the qubits get anti-synchronized. Meanwhile, we define V to characterize the visibility of synchronization and show that there is an apparent link among V, entanglement and quantum mutual information whether in the Markovian or non-Markovian regimes when the environment is in the vacuum state. Moreover, with the increase of temperature, the parameter region of the emergence of anti-synchronization and the time to get anti-synchronized in the non-Markovian regime gradually approaches that in the Markovian regime. The high temperature decreases the parameter region of the emergence of anti-synchronization in both Markovian and non-Markovian regimes, and breaks the connection among V, entanglement and quantum mutual information.  相似文献   

3.
吴超  方卯发  肖兴  李艳玲  曹帅 《中国物理 B》2011,20(2):20305-020305
A scheme is proposed where two superconducting qubits driven by a classical field interacting separately with two distant LC circuits connected by another LC circuit through mutual inductance,are used for implementing quantum gates.By using dressed states,quantum state transfer and quantum entangling gate can be implemented.With the help of the time-dependent electromagnetic field,any two dressed qubits can be selectively coupled to the data bus (the last LC circuit),then quantum state can be transferred from one dressed qubit to another and multi-mode entangled state can also be formed.As a result,the promising perspectives for quantum information processing of mesoscopic superconducting qubits are obtained and the distributed and scalable quantum computation can be implemented in this scheme.  相似文献   

4.
Quantum entanglement has become a resource for the fascinating developments in quantum information and quantum communication during the last decades. It quantifies a certain nonclassical correlation property of a density matrix representing the quantum state of a composite system. We discuss the concept of how entanglement changes with respect to different factorizations of the algebra which describes the total quantum system. Depending on the considered factorization a quantum state appears either entangled or separable. For pure states we always can switch unitarily between separability and entanglement, however, for mixed states a minimal amount of mixedness is needed. We discuss our general statements in detail for the familiar case of qubits, the GHZ states, Werner states and Gisin states, emphasizing their geometric features. As theorists we use and play with this free choice of factorization, which for an experimentalist is often naturally fixed. For theorists it offers an extension of the interpretations and is adequate to generalizations, as we point out in the examples of quantum teleportation and entanglement swapping.  相似文献   

5.
Spin states are studied in the tomographic-probability representation. The standard probability distribution of spin projection onto a direction in space is used instead of the spinor or the density matrix to identify the quantum state. The Shannon entropy and information are associated with the spin tomographic probability. A short review of the probability-theory notions is presented. Analysis of tomographic entropy and tomographic information for the Werner state is considered. The probability representation is used to describe a spin-3/2 particle and two qubits. The connection of tomographic entropy with the von Neumann entropy is discussed.  相似文献   

6.
The theory of the quantum information transmission between two semiconductor two-level quantum dots as two qubits through an intermediary photon gas in a cavity is presented. The reduced density matrix of each two-level quantum dot is the quantum information encoded into this qubit. The quantum information exchange between two distant qubits imbedded in the photon gas is performed in the form of the mutual dependence of their reduced density matrices due to the interaction between the electrons in the qubits and the photon gas. The system of rate equations for the reduced density matrix of the two-qubit system is derived. From the solution of this system of equations it follows the mutual dependence of the reduced density matrices of two distant qubits.  相似文献   

7.
In this paper we provide a novel way to explore the relation between quantum teleportation and quantum phase transition. We construct a quantum channel with a mixed state which is made from one dimensional quantum Ising chain with infinite length, and then consider the teleportation with the use of entangled Werner states as input qubits. The fidelity as a figure of merit to measure how well the quantum state is transferred is studied numerically. Remarkably we find the first-order derivative of the fidelity with respect to the parameter in quantum Ising chain exhibits a logarithmic divergence at the quantum critical point. The implications of this phenomenon and possible applications are also briefly discussed.  相似文献   

8.
Scalable quantum networks require the capability to create, store and distribute entanglement among distant nodes (atoms, trapped ions, charge and spin qubits built on quantum dots, etc.) by means of photonic channels. We show how the entanglement between qubits and electromagnetic field modes allows generation of entangled states of remotely located qubits. We present analytical calculations of linear entropy and the density matrix for the entangled qubits for the system described by the Jaynes-Cummings model. We also discuss the influence of decoherence. The presented scheme is able to drive an initially separable state of two qubits into an highly entangled state suitable for quantum information processing.  相似文献   

9.
Motivated by recent experimental studies on coherent dynamics transfer in three interacting atoms or electron spins [Phys. Rev. Lett 114(2015) 113002, Phys. Rev. Lett 120(2018) 243604], here we study entanglement entropy transfer in three interacting qubits. We analytically calculate time evolutions of wave function, density matrix and entanglement of the system. We find that initially entangled two qubits may alternatively transfer their entanglement entropy to other two qubit pairs. Thus dynamical evolution of three interacting qubits may produce a genuine three-partite entangled state through entanglement entropy transfers. In particular, different pairwise interactions of the three qubits endow symmetric and asymmetric evolutions of the entanglement transfer,characterized by the quantum mutual information and concurrence. Finally, we discuss an experimental proposal of three Rydberg atoms for testing the entanglement dynamics transfer of this kind.  相似文献   

10.
We investigate the dynamics of quantum discord during the purification process. In the case of Werner states, it is shown that quantum discord is increased after a round of purification protocol. Furthermore, quantum mutual information and classical correlation is also increased during this process. We also give an analytic expression for a class of higher dimensional states which have additive quantum discord.  相似文献   

11.
We present a scheme for quantum privacy amplification (QPA) for a sequence of single qubits. The QPA procedure uses a unitary operation with two controlled-not gates and a Hadamard gate. Every two qubits are performed with the unitary gate operation, and a measurement is made on one photon and the other one is retained.The retained qubit carries the state information of the discarded one. In this way, the information leakage is reduced.The procedure can be performed repeatedly so that the information leakage is reduced to any arbitrarily low level. With this QPA scheme, the quantum secure direct communication with single qubits can be implemented with arbitrarily high security. We also exploit this scheme to do privacy amplification on the single qubits in quantum information sharing for long-distance communication with quantum repeaters.  相似文献   

12.
We present a scheme for quantum privacy amplification (QPA) for a sequence of single qubits. The QPA procedure uses a unitary operation with two controlled-not gates and a Hadamard gate. Every two qubits are performed with the unitary gate operation, and a measurement is made on one photon and the other one is retained. The retained qubit carries the state information of the discarded one. In this way, the information leakage is reduced. The procedure can be performed repeatedly so that the information leakage is reduced to any arbitrarily low level. With this QPA scheme, the quantum secure direct communication with single qubits can be implemented with arbitrarily high security. We also exploit this scheme to do privacy amplification on the single qubits in quantum information sharing for long-distance communication with quantum repeaters.  相似文献   

13.
We compare the results of ground state and spectroscopic measurements carried out on superconducting flux qubits which are effective two-level quantum systems. For a single qubit and for two coupled qubits we show excellent agreement between the parameters of the pseudospin Hamiltonian found using both methods. We argue that by making use of the ground state measurements the Hamiltonian of N coupled flux qubits can be reconstructed as well at temperatures smaller than the energy level separation. Such a reconstruction of a many-qubit Hamiltonian can be useful for future quantum information processing devices.  相似文献   

14.
We theoretically investigate the generation of quantum correlations by using two distant qubits in free space or mediated by a plasmonic nanostructure. We report both entanglement of formation as well as quantum discord and classical correlations. We have found that for proper initial state of the two-qubit system and distance between the two qubits we can produce quantum correlations taking significant value for a relatively large time interval so that it can be useful in quantum information and computation processes.  相似文献   

15.
Based on the monogamy of entanglement, we develop the technique of quantum conditioning to build an additive entanglement measure: the conditional entanglement of mutual information. Its operational meaning is elaborated to be the minimal net "flow of qubits" in the process of partial state merging. The result and conclusion can also be generalized to multipartite entanglement cases.  相似文献   

16.
Various physical systems were proposed for quantum information processing. Among those nanoscale devices appear most promising for integration in electronic circuits and large-scale applications. We discuss Josephson junction circuits in two regimes where they can be used for quantum computing. These systems combine intrinsic coherence of the superconducting state with control possibilities of single-charge circuits. In the regime where the typical charging energy dominates over the Josephson coupling, the low-temperature dynamics is limited to two states differing by a Cooper-pair charge on a superconducting island. In the opposite regime of prevailing Josephson energy, the phase (or flux) degree of freedom can be used to store and process quantum information. Under suitable conditions the system reduces to two states with different flux configurations. Several qubits can be joined together into a register. The quantum state of a qubit register can be manipulated by voltage and magnetic field pulses. The qubits are inevitably coupled to the environment. However, estimates of the phase coherence time show that many elementary quantum logic operations can be performed before the phase coherence is lost. In addition to manipulations, the final state of the qubits has to be read out. This quantum measurement process can be accomplished using a single-electron transistor for charge Josephson qubits, and a d.c.-SQUID for flux qubits. Recent successful experiments with superconducting qubits demonstrate for the first time quantum coherence in macroscopic systems.  相似文献   

17.
Many previous studies about teleportation are based on pure state. Study of quantum channel as mixed state is more realistic but complicated as pure states degenerate into mixed states by interaction with environment, and the Werner state plays an important role in the study of the mixed state. In this paper, the quantum wireless multihop network is proposed and the information is transmitted hop by hop through teleportation. We deduce a specific expression of the recovered state not only after one-hop teleportation but also across multiple intermediate nodes based on Werner state in a quantum wireless multihop network. We also obtain the fidelity of multihop teleportation.  相似文献   

18.

In this paper, two fault tolerant authenticated quantum dialogue (AQD) protocols against the collective-dephasing noise and the collective-rotation noise are constructed, respectively, by using logical qubits and controlled-not (CNOT) operations. The proposed protocols can accomplish the mutual identity authentications between two communicants before decoding and overcome the information leakage problem. The quantum measurements throughout the proposed protocols can be simplified into the single-photon measurements. Moreover, they have the information-theoretical efficiency as high as 50%. Different from the recent fault tolerant QD protocols generating two adjacent logical qubits in the same state, the proposed protocols do not have this special requirement.

  相似文献   

19.
The entanglement of two qubits is investigated in the range of their ultra-strongly coupling with a quantum oscillator. The two qubits are initially in four Bell states and they are under the control mechanism of the coherent state of the quantum oscillator. There are four parameters: the average number of the coherent state, the ultra-strong coupling strength, the ratio of two frequencies of qubit and oscillator, and the inter-interaction coupling of the two qubits in the mechanism, and they all are influential parameters on the entanglement of the two qubits. One Bell state |0>is easyily kept and is trivial case. The novel results show that there is one state |I0> among the other three Bell states which the entanglement of the two qubits could be almost completely preserved. The possibility is made into reality by the appropriate choice of the four influential parameters. We give two different schemes to choose the respective parameters to maintain the entanglment of |I0> almost undiminished. The results will be useful for the quantum information process.  相似文献   

20.

We propose two resource-efficient schemes of direct entanglement measurement of two-qubit Werner states via hybrid interaction system with nitrogen-vacancy (NV) center coupled to micro-cavity. Based on the unconventional encoding mode on auxiliary qubits, our physical unit can realize the hybrid controlled phase gate and controlled-NOT gate between spin and polarization qubits. Utilizing only one copy of initial entangled state, we implement direct concurrence measurement of spin Werner states in NV centers and polarization Werner states of single photons. Both schemes can be transformed into remote ones with the initial entangled states possessed by spatially separated participants. Experimental feasibility analyses indicate that the presented schemes have reliable performance in the current available experimental conditions.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号