首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The synthesis and characterization of several new phosphorus-containing partially lower rim substituted derivatives of 5,11,17,23-tetra(t-butyl) calix(4)arene (I) and 5,11,17,23-tetra(t-octyl)calix(4)arene (II), namely 5,11,17,23-tetra(t-butyl)-25,27-dihydroxy-26,28-bis(diphenylphosphinoyl-oxy) calix(4)arene (IV); 5,11,17,23-tetra(t-butyl)-25-hydroxy-26,27,28-tris(tetramethyldiamido-phosphinoyl-oxy) calix(4)arene (Vb); 5,11,17,23-tetra(t-butyl)-25,27-dihydroxy-26,28-bis(dimethyl-phosphinoyl-methoxy) calix(4)arene (VI); 5,11,17,23-tetra (t-octyl)-25,27-dihydroxy-26,28-bis(dimethyl-phosphinoyl-methoxy) calix(4)arene (VII) are reported. The structure of the synthesized calix(4)arene derivatives are identified and confirmed by elemental analysis, IR, 1H, 13C, 31P{1H} NMR spectroscopy and mass spectrometry as and X-ray crystallographic analysis of 5,11,17,23-tetra(t-butyl)-25,27-dihydroxy-26,28-bis(dimethyl-phosphinoyl-methoxy) calix(4)arene VI. According to the NMR spectra, all calix(4)arenes are in cone conformation.  相似文献   

2.
The stability constants of alkali metal complexes obtained from the followingO-substituted calix[4]arenes were determined by UV/Vis spectroscopy inmethanol at 20°C: 5,11,17,23-tetra-tert-butyl-25,27-bis(diethylcarbamoylmethoxy)-26,28-bis(diphenylphosphinoylmethoxy)calix[4]arene(cone-1), 25,27-syn-26,28-anti-5,11,17,23-tetra-tert-butyl-25,27-bis(diethylcarbamoylmethoxy)-26,28-bis(diphenylphosphinoylmethoxy)calix[4]arene (paco-1),5,11,17,23-tetra-tert-butyl-25,27-diethoxycarbonylmethoxy-26,28-bis(diphenylphosphinoylmethoxy)calix[4]arene(cone-2) and25,27-syn-26,28-anti-5,11,17,23-tetra-tert-butyl-25,27-diethoxycarbonylmethoxy-26,28-bis(diphenylphosphinoylmethoxy)calix[4]arene(paco-2). All ligands form 1:1 complexes with alkali metal cations. The amide-containing calixarenes were found to be more efficient for alkali metalcomplexation than those bearing ester substituents. While sodium ions are selectivelycomplexed by the two mixed amide-(phosphine oxide) calixarenes, the twoester-containing isomers cone-2 and paco-2 turned out to be selective towards potassium and rubidium ions, respectively. With allfour ligands the lowest stability constants were found for the lithium andcesium ions.  相似文献   

3.
Three novel 25,27-dihydroxy-26,28-bis(3-benzylselenopropoxy)-5,11,17,23-tetra-tert-butylcalix[4]-arene (2),25,27-dihydroxy-26,28-bis[3-(2-hydroxyethylseleno)propoxy]-5,11,17,23-tetra-tert-butyl-calix[4]arene (3) and 25,27-dihydroxy-26,28-bis(3-propylselenoproppxy)-5,11,17,23-tetra-tert-butyl-calix[4]arene (4) were synthesized for the comparison of their ion-selectivity in ion-selective electrodes (ISE). X-ray structure of the CH/π complex of 4.CH2Cl2 was elucidated. ISEs based on 2-4 as neutral ionophores were prepared, and their selectivity coefficients for Ag (logKAg,M^pot) were investigated against some main group metal ions and transition metal ones using the fixed interference method (FIM). These ISEs showed excellent Ag^ selectivity over most of the interfering cations examined. It is evident that the stronger Hg^2 interference may not be produced while hard donors (hydroxy) are close to the soft selenium donors.  相似文献   

4.
The complexation spectroscopic behavior of three p-tert-butylcalix[4]arene Schiff bases i.e. 5,11,17,23-tetra-tert-butyl-25,27-bis[2-[N-(3-nitrobenzylidene)amino]ethoxy]-26,28-dihydroxycalix[4]arene (1), 5,11,17,23-tetra-tert-butyl-25,27-bis[2-[N-(2-hydroxybenzylidene)amino]ethoxy]-26,28-dihydroxycalix[4]arene (2), and 5,11,17,23-tetra-tert-butyl-25,27-bis[2-[N-(2-hydroxy-3-methoxybenzylidene)amino]ethoxy]-26,28-dihydroxycalix[4]arene (3) with lanthanoid nitrates (Tb3+ and Eu3+) has been investigated in anhydrous acetonitrile at 25 degrees C by using UV-vis and FT-IR as well as fluorescence spectra. The results obtained indicated that the spectroscopic behavior of compounds 1-2 upon complexation with lanthanoid ions did not show any significant larger difference in comparison with free compounds 1 and 2, which may be contributed to the poor binding ability. Contrary to compounds 1 and 2, the lower rim functional groups in compound 3 can form two large pi electron conjugate system with lanthanide ion and encapsulate lanthanide ions tightly, displaying the novel spectroscopic behavior upon complexation with lanthanide ions. As compared with compound 3, the formation complexes of compound 3 with Tb3+ and Eu3+ showed new broad intense absorption at 398 nm, respectively, and IR spectra showed that O-H stretching vibration at 3413.40 cm(-1) displayed a large drop. It is interestingly noted that the narrow emission line spectra were observed only for 3 complex with Tb3+, but did not for 3-Eu3+ complex. In the 3-Eu3+ complex, the broad-band emission at lambda(max) = 534 nm was obtained at the excitation of 398 nm. The spectroscopic behavior of three calix[4]arene derivatives upon complexation with lanthanoids was discussed from the relationship between the host structure and the properties of guest lanthanide ions.  相似文献   

5.
The direct preparation of the sodium complex of 5,11,17,23-tetra(tert-butyl)-25,27-di(ethoxymethoxy)-26,28-(diethylacetamido) calix[4]arene 1.NaI is reported. The crystal structure of 1.NaI shows the calix unit to be in a cone conformation with the sodium located in the cavity delineated by the oxygen atoms.  相似文献   

6.
王浩  张衡益  刘育 《中国化学》2005,23(6):740-744
Two calix[4]arene isomers with benzaldehyde moieties, i.e., 5,11,17,23-tetra-tert-butyl-25,27-bis[2-(o-formyl-phenoxy)ethoxy]-26,28-dihydroxycalix[4]arene (3) and 5,11,17,23-tetra-tert-butyl-25,27-bis[2-(p-formylphenoxy)-ethoxy]-26,28-dihydroxycalix[4]arene (4), were synthesized according to a newly designed route in high yields, and their crystal structures have been determined by X-ray crystallographic study. The photophysical behavior on complexation of calix[4]arene derivatives 3 and 4 with terbium(Ⅲ) nitrate was investigated in anhydrous acetonitrile at 25℃ by UV-Vis and fluorescence spectroscopies. The crystallographic structure of 3 indicated that the eight oxygen atoms formed a preorganized ionophoric cavity due to intramolecular π-π stacking, which could encapsulate lanthanide ions tightly. In sharp contrast, the compound 4 formed a linear array by intermolecular π-π stacking, hence the oxygen atoms of pendant arms could not coordinate with metal ions, giving a poor binding ability to Tb^3 . The absorption spectra of 3 with Tb^3 showed clearly a new broad intense absorption at 385nm. Interestingly, the narrow emission line spectrum has also been observed for compound 3 with Tb^3 , and the results obtained were discussed from the viewpoint of energy transfer mechanism between host structures and the properties of lanthanide ions.  相似文献   

7.
Yu Liu 《Tetrahedron》2003,59(40):7967-7972
A series of novel double-armed calix[4]arene derivatives, i.e. 5,11,17,23-tetra-tert-butyl -25,27-bis[2-[(2-hydroxy-5-(4-nitroazo)benzylidene)amino]ethoxy]-26,28-dihydroxy-calix[4]-arene (4), 5,11,17,23-tetra-tert-butyl-25,27-bis[2-[(2-hydroxy-5-(2-nitroazo)benzylidene) amino]ethoxy]-26,28-dihydroxycalix[4]arene (5), 5,11,17,23-tetra-tert-butyl-25,27-bis[2-[(2-hydroxy-5-(4-chloroazo)benzylidene)amino]ethoxy]-26,28-dihydroxycalix[4]arene (6), have been synthesized as an selective chromoionophore for Na+. The complexation behavior of ligands 4-6 with alkali metal ions Na+, K+, Rb+and Cs+ has been evaluated by using UV-Vis spectrometry in CH3CN-H2O (99:1/V:V) solution at 25°C. The UV-Vis spectra show that the complexation of 4-6 with Na+exhibits obvious bathochromic shifts (λmax 379→480 nm) and there is a unique color change in the solution from yellow to red upon complexation. The binding constants for Na+ are higher than that of other alkali metal ions, giving the highest cation selectivity up to 7 for Na+/K+. The binding ability and photophysical behavior of alkali cations by calix[4]arene derivatives 4-6 are discussed from the point of view of substituted effects at the lower rim of parent calix[4]arene and size-fit concept between host calix[4]arenes and guest cations.  相似文献   

8.
何卫江  邱琳    李峻柏  张宇  郭子建  朱龙根 《中国化学》2006,24(6):800-806
The Langmuir monolayer properties of lower rim aromatically substituted calix[4]arenes, 5,11,17,23-tetra-tert-butyl-25,27-bis(2-naphth-1'-ylacetylaminoethoxy)-26,28-dihydroxylcalix[4]arene (BNAEC), 5,11,17,23-tetra-tert- butyl-25,27-bis(2-benzoylamino ethoxy)-26,28-dihydroxylcalix[4]arene (BBAEC) and 5,11,17,23-tetra-tert-butyl- 25,27-bis(2-cinnamoylaminoethoxy)-26,28-dihydroxylcalix[4]arene (BCAEC), have been studied. Film balance measurements and Brewster angle microscopy (BAM) observation demonstrate that all the compounds can form Langmuir monolayers with different molecular limiting areas. BNAEC or BBAEC monolayer is able to form condensed domains during compression, while BCAEC monolayer can never form condensed domain. BNAEC monolayer is more readily to form condensed domain than BBAEC monolayer. Moreover, BNAEC monolayer can form the total condensed phase during compression even when T=28℃, while BBAEC monolayer can not when T 〉 10 ℃. The results imply that different lower rim aromatic substitutions affect essentially the intermolecular interaction and molecular packing in the monolayer at air/water interface.  相似文献   

9.
The host–guest complexation reactions between 5,11,17,23‐tetra‐tert‐butyl‐25,27‐diethoxycarbonylmethoxy‐26,28‐dimethoxy calix[4]arene (BDDC4) and alkali and alkaline‐earth metal ions were investigated by facilitated ion transfer processes across water/1,2‐dichloroethane microinterface by using steady‐state cyclic voltammetry and differential pulse voltammetry. The obtained facilitated transfers for Li+, Na+, K+, Rb+ and Ca2+ were evaluated under the different experimental conditions, at the excess concentrations of metal ions with respect to BDDC4 and vice versa. The association constants having 1 : 1 stoichiometry for Li+, Na+, K+ and Rb+ in 1,2‐DCE were determined. Also, we demonstrated that BDDC4 can play an important role for the development of highly selective chemical sensor for Ca2+ among alkaline‐metal ions in the concentration range of 0.1–1.0 mM in aqueous solution.  相似文献   

10.
In this study the selective derivatization of p-tert-butylcalix[4]arene was carried out and two new p-tert-butylcalix[4]arene β-ketoimin, 5,11,17,23-tetra-tert-butyl-25,27-bis-3-methyl-[(β-ketoimine)-ethoxy]-26,28-dihydroxycalix[4]arene (4), and 5,11,17,23-tetra-tert-butyl-25,27-bis-3-chloro-[(β-ketoimine)-ethoxy]-26,28-dihydroxycalix[4]arene (5) have been synthesized. In the synthesis, the lower rim of p-tert-butylcalix[4]arene was modified in order to acquire binding site for the recognition of dichromate anion. It was observed that these ionophores 4 and 5 showed high affinity towards dichromate anion. The protonated Schiff-base forms of the receptors were effective for transferring the HCr2O7 ? anion from aqueous phase to a dichloromethane phase.  相似文献   

11.
The synthesis of two 1,3‐bis(4‐ethynylbenzyloxy)calix[4]arenes, 5,11,17,23‐tetrakis(1,1‐dimethylethyl)‐25,27‐bis(4‐ethynylbenzyloxy)‐26,28‐dihydroxycalix[4]arene ( 1 ) and 25,27‐bis(4‐ethynylbenzyloxy)‐26,28‐dihydroxycalix[4]arene ( 2 ), was accomplished through Sonogashira coupling of appropriate calixarene derivatives. Methods for the polymerization of these bifunctional building blocks with Rh(I) as a catalyst, leading ultimately to conjugated polymers having calix[4]arene units incorporated into the main chain, were explored. Calixarenes 1 and 2 were efficiently polymerized with rhodium‐based initiators and afforded the conjugated polymers poly{5,11,17,23‐tetrakis(1,1‐dimethylethyl)‐25,27‐bis(4‐ethynylbenzyloxy)‐26,28‐dihydroxycalix[4]arene} ( poly 1 ) and poly{25,27‐bis(4‐ethynylbenzyloxy)‐26,28‐dihydroxycalix[4]arene}. Depending on the conditions, high conversions and good yields were obtained. The effects of adding cocatalysts (NHEt2 and/or PPh3) were studied in connection with the number‐average molecular weight and the molecular weight distribution of the resultant polymer ( poly 1 ) and tentatively correlated with the formation of low‐molecular‐weight materials. A catalytic system containing triphenylphosphine as the sole additive ([Rh(nbd)Cl]2; [Rh]/[PPh3] = 0.5) proved to be the best for the polymerization of ptert‐butylcalixarene compound 1 . Linear polymers having high number‐average molecular weights (up to 1.1 × 105 g mol?1) with low polydispersities were produced under these conditions. For debutylated homologue 2 , its polymerization was best carried out in the absence of any added cocatalyst. A cyclopolymerization route, comprising the intramolecular ring closing of the calix[4]arene pendant ethynyl groups followed by an intermolecular propagation step, is advanced to explain the results. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 7054–7070, 2006  相似文献   

12.
The synthesis of two new flavin substituted calix[4]arene derivatives, 9 and 10 , is described. The first flavin substituted calix[4]arene derivative 9 was synthesized by the reaction of 3‐methylalloxazine ( 5 ) with 25,27‐bis(3‐bromopropoxy)‐26,28‐dihydroxy‐5,11,17,23‐tetra(tert‐butyl)calix[4]arene ( 4 ) in high yield (92%). The other derivative 10 was prepared from 3‐methylalloxazine‐1‐acetic acid ( 7 ) and 25,27‐bis(3‐cyanopropoxy)calix[4]arene ( 3 ). All new compounds were characterized by a combination of FT‐IR and 1H‐NMR spectroscopy, and elemental‐analysis techniques.  相似文献   

13.
Five new polymeric compounds containing more than one calix[4]arene have been synthesized by reacting an oligomer with 5,11,17,23-tetrakis[(diethylamino)methyl]-25,26,27,28-tetrahydroxycalix[4]arene (L1), 25,27-dimethyl-26,28-dihydroxy-p-tert-butylcalix[4]arene diketone (L2), and p-nitrocalix[4]arene (L3), and chloromethylated polystyrene with 25,27-dimethyl-26,28-dihydroxy-p-tert-butylcalix[4]arene diketone (L4) and p-nitrocalix[4]arene (L5). These compounds were studied by the selective extraction of Fe3+ cation from the aqueous phase into the organic phase and was carried out by using compounds L1L5. It was observed that the polymer support attached to the lower rim of p-nitrocalix[4]arene was the most efficient carrier of Fe3+ in the extraction process.  相似文献   

14.
Two novel tweezer-like 25,27-dihydroxy-26,28-bis(phenylthiaethoxy)calix[4]arenes 6 and 7 were synthesized by the reaction of 25,27-dihydroxy-26,28-bis(bromoethoxy)calix[4]arenes 3 and 4 for the evaluation of their ion-selectivity in ion-selective electrodes (ISEs). X-ray structural analysis indicated that calix[4]arene 7 is in an interesting infinite linear aggregate via self-inclusion. For investigation of the influences of substitutes on the behavior of the ISEs, the halogen substituted aryl analogues of 25,27-dihydroxy-26,28-bis(arylthiaethoxy)calix[4]arenes 8-12 were also synthesized and their ISE performances were evaluated under the same conditions. ISEs based on 6-12 as neutral ionophores were prepared, and their selectivity coefficients for Ag+ (log KAg,M(pot)) were investigated against other alkali metal, alkaline-earth metal, lead, ammonium ions and some transition metal ions using the fixed interference method (FIM). These ISEs showed excellent Ag+ selectivity over most of the interfering cations examined, except for Hg2+ having relative smaller interference (log KAg,Hg(pot) < or = 2.1). The 19F NMR spectra of 9 and 9.AgClO4 were recorded for investigation the fluorine environments in the complex. The 19F NMR spectra strongly suggested that the fluorine atoms on ionophore 9 participated in ligation with silver cation.  相似文献   

15.
Three new thiacalix[4]arene derivatives, 5,11,17,23-tetra-tert-butyl-25,27-di(2-hydroxyethoxy)-26,28-dihydroxythiacalix-{}[4]arene (2), 5,11,17,23-tetra-tert-25, 26,27,28-tetrakis[(methylcarboxyl)methoxy]thiacalix[4]arene (3),5,11,17,23-tetra-tert-butyl-25,26,27,28-tetrakis(2-hydroxy-1-propanoxy)thiacalix[4]arene (4), were synthesized for the first time. The coordination properties of thiacalix[4]arene(1) and its derivatives (2 and 4) were investigated by detecting the interactions betweenthese compounds and two palladium complexes, cis-[Pd(en)(H2O)2]2+ and cis-[Pd(dtco-3-OH)(H2O)2]2+, by means of electrospray ionization mass spectrometry (ESI-MS) technique.  相似文献   

16.
This article reports the synthesis and the properties of 5,11,17,23-tetra(t-butyl)-25,27-bis-(ethoxy-1,8-naphthalimide)-26,28-hidroxy-calix[4]arene and the formation of an inclusion compound in organic medium. This functionalized calix[4]arene was conceived as the association of a potential host species with a good fluorophore for optical sensoring purposes. Calix[4]-NI as we will call it, maintains its ‘cone-pinched’ configuration and exhibits typical naphthalimide fluorescence bands in non-polar solvents. Its ability to interact with guest species via hydrogen bonding in its endo-hydrophilic cavity to form inclusion compounds was verified with absorption and fluorescence measurements using N-ethanol-1,8-naphthalimide as guest species, which was projected to fit exactly the host cavity and to interact with its naphthalimide π electrons. For this reason, it was possible to follow the formation of the inclusion compound with electronic spectroscopy.  相似文献   

17.
Journal of Radioanalytical and Nuclear Chemistry - A new MOFs-based adsorbent UiO-66@iPCC5 was prepared by hybridization of 25,27-bis(iso-propoxyl)-calix[4]arene-26,28-crown-5 (iPCC5) into the...  相似文献   

18.
The synthesis of functional aromatic bis(sulfonyl chlorides) containing an acetophenone and two sulfonyl chloride groups, i.e., 3,5-bis[4-(chlorosulfonyl)phenyl]-1-acetophenone (16), 3,5-bis(chlorosulfonyl)-1-acetophenone (17), and 3,5-bis(4-(chlorosulfonyl)phenyloxy)-1-acetophenone (18) via a sequence of reactions, involving in the last step the quantitative oxidative chlorination of S-(aryl)- N,N'-diethylthiocarbamate, alkyl- or benzyl thiophenyl groups as masked nonreactive precursors to sulfonyl chlorides is described. A related sequence of reactions was used for the synthesis of the aromatic trisulfonyl chloride 1,1,1-tris(4-chlorosulfonylphenyl)ethane (24). 4-(Chlorosulfonyl)phenoxyacetic acid, 2,2-bis[[[4-(chlorosulfonyl)phenoxyacetyl]oxy]methyl]-1,3-propanediyl ester (27), 5,11,17,23-tetrakis(chlorosulfonyl)-25,26,27,28-tetrakis(ethoxycarbonylmethoxy)calix[4]arene (38), 5,11,17,23,29,35-hexakis(chlorosulfonyl)-37,38,39,40,41,42-hexakis(ethoxycarbonylmethoxy)calix[6]arene (39), 5,11,17,23,29,35,41,47-octakis(chlorosulfonyl)-49,50,51,52,53,54,55,56-octakis(ethoxycarbonylmethoxy)calix[8]arene (40), 5,11,17,23-tetrakis(tert-butyl)-25,26,27,28-tetrakis(chlorosulfonyl phenoxyacetoxy)calix[4]arene (44), 5,11,17,23,29,35-hexakis(tert-butyl)-37,38,39,40,41,42-hexakis(chlorosulfonylphenoxyacetoxy)calix[6]arene (45), and 5,11,17,23,29,35,41,47-octakis(tert-butyl)-49,40,51,52,53,54,55,56-octakis(chlorosulfonylphenoxyacetoxy)calix[8]arene (46) were synthesized by two different multistep reaction procedures, the last step of both methods consisting of the chlorosulfonation of compounds containing suitable activated aromatic positions. 2,4,6-Tris(chlorosulfonyl)aniline (47) was obtained by the chlorosulfonation of aniline. The conformation of two series of multisulfonyl chlorides i.e., 38, 39, 40 and 44, 45, 46, was investigated by (1)H NMR spectroscopy. The masked nonreactive precursor states of the functional aromatic multisulfonyl chlorides and the aromatic multisulfonyl chlorides reported here represent the main starting building blocks required in a new synthetic strategy elaborated for the preparation of dendritic and other complex organic molecules.  相似文献   

19.
This article displays the synthesis of N-(2-tosylato)ethylpiperazine (ii) and 5,11,17,23-tetra-tert-butyl-25,27-bis-(2-piprazinoethyl)-26,28-dihydroxycalix[4]arene (3). Compounds (ii) and 3 were characterized through elemental analysis, FT-IR, 1H NMR and/or 13C NMR studies. The transition metal cations (Hg2+, Co2+, Ni2+, Cu2+, and Cd2+) and dichromate anion were studied by liquid–liquid extraction experiment. The results showed that compound 3 has moderate but selective extraction ability for Hg2+ and dichromate anion. Comparison between extraction properties of compound 3 with previously reported 5,11,17,23-tetra-tert-butyl-25,27-bis(isoniazidylcarbonylmethoxy)-26,28-dihydroxy-calix[4]arene (4) and protonated pyridinium form of 4 (5) is also described.  相似文献   

20.
Ion-selective membrane electrodes doped with the urea- or thiourea-functionalised calix[4]arenes, 5,11,17,23-tetra-tert-butyl-25,27-bis[[4-N′-(phenylureido)butyl]oxy]-26,28-dipropoxy calix[4]arene (I) and 5,11,17,23-tetra-tert-butyl-25,27-bis[[4-(N′-phenylthioureido)-butyl]oxy]-26,28-dipropoxy calix[4]arene (II), were evaluated for anion sensing. Potentiometric results show that these calixarene ionophore-based membrane electrodes exhibit a good sensitivity to aqueous solutions of the monohydrogen orthophosphate species HPO42− in the concentration range 5.0 × 10−5 to 1.0 × 10−1 M, with near-Nernstian response slopes of −33.0 and −28.0 mV dec−1 for ionophores I and II, respectively. Selectivity coefficient values for monohydrogen orthophosphate over a range of common anions were determined by the fixed interference and matched potential methods and indicated that these membrane electrodes exhibit a good selectivity for HPO42− with respect to the other anions, including sulfate and nitrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号