首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Murti MV  Khopkar SM 《Talanta》1976,23(3):246-248
Thiobenzoylacetone in benzene is used for the extraction and spectrophotometric determination of cobalt at pH 8.4-9.1. The orange-yellow complex is measured at 460 nm. The system conforms to Beer's law over the range 0.20-4.58 microg ml of extract. The colour of the complex is stable for at least 144 hr. Cobalt(II) is quantitatively extracted and determined in the presence of 200:1 (w w ratios) of various ions. The method is made selective by using common sequestering agents such as thiourea or fluoride or by selective extraction with mesityl oxide, tributylphosphate and acetylacetone. It is possible to determine cobalt in the presence of nickel by simultaneous spectrophotometry. The method is rapid, simple, selective and sensitive.  相似文献   

2.
Tarafder PK  Durani S  Saran R  Ramanaiah GV 《Talanta》1994,41(8):1345-1351
A sensitive and highly selective aqueous as well as extractive spectrophotometric method has been developed for the determination of titanium(IV) using 2,3-dihydroxynaphthalene (H(2)ND) as a chromogenic agent. The reagent (H(2)ND) forms a 1:3 (TiOH(3+):ligand) complex at pH 4-9. The molar absorptivity and Sandell's sensitivity are 3.2 x 10(4) l . mol(-1)mol . cm(-1) and 0.001 microg/cm(2), respectively at lambda(max) 375 nm. The method has been found highly selective for Ti(IV) determination in rock samples. Solvent extraction of Ti(IV) in ethylacetate greatly improves the detection limit of the method. The method has been successfully applied to diverse silicate rock samples and results obtained are favourably comparable with those obtained from the tiron method. The reagent (H(2)ND) used in the present investigation is a much better variant than tiron for titanium(IV) determination in silicate rock samples in terms of sensitivity, selectivity, operational simplicity and economy.  相似文献   

3.
A selective and sensitive spectrophotometric method for the determination of Th(IV) has been based on the reaction with thorin and subsequent extraction of the red-orange coloured complex with N-hydroxy-N,N'-diphenylbenzamidine (HDPBA) in benzene as floated complex at pH 2.2. The complex in ethanol exhibits a maximum absorbance at 495 nm, with a molar absorptivity of 6.0x10(4) l mol(-1) cm(-1), with a Sandell's sensitivity of 3.9x10(-3) microg cm(-2). The method follows Beer's law up to 3.0 microg Th(IV) ml(-1). None of the common cations and anions tested interfere. The detection limit of the method is 0.04 microg Th(IV) ml(-1), the RSD (n=10) is 1.4%. The method has been successfully employed for the determination of thorium in various standard and monazite samples.  相似文献   

4.
Sato S  Uchikawa S 《Talanta》1986,33(2):115-118
A very sensitive, selective and simple method for extraction and spectrophotometric determination of titanium(IV) with an alpha-hydroxy acid has been developed. p-Chloromandelic acid reacts with titanium in weakly acidic aqueous solution at room temperature to form a complex anion extractable into chlorobenzene with Malachite Green as counter-ion. Titanium is determined indirectly by measuring the absorbance of Malachite Green in the extract at 630 nm. The calibration graph is linear for titanium(IV) over the range 0.25-7.5muM (0.05-1.44 mug); the apparent molar absorptivity is 1.31 x 10(5) l.mole(-1).cm(-1). The method has been successfully applied to the determination of titanium in mild steels.  相似文献   

5.
Abstract

A selective and sensitive method for the extraction followed by a spectrophotometric or atomic absorption spectrophotometric determination of titanium(IV) in trace amounts is described. The molar absorptivity of the caffeic acid-Aliquat 336 complex is 5.7 × 104 l mol?1 cm?1 at 380 nm; the yellow coloured complex obeys Beer's law in the range 0.05–1.2 mg/l of titanium in the final extract. The method is applied to the preconcentration, separation and determination of titanium(IV) in steel, industrial effluents and environmental samples.  相似文献   

6.
A selective extraction–spectrophotometric method has been developed for determination of selenium(IV) using O-methoxyphenyl thiourea (OMePT) as a chelating agent. The basis of the proposed method is the spectrophotometric determination of selenium(IV)–OMePT complex obtained after extraction of selenium(IV) from 3.5 M hydrochloric acid media using OMePT in chloroform solvent. The complex shows maximum absorbance at 350 nm against the reagent blank. The Beer’s law was obeyed over the concentration range 5–60 µg mL?1 of selenium(IV). The optimum concentration range was 20–50 µg mL?1 as evaluated from Ringbom’s plot. The molar absorptivity and Sandell’s sensitivity of the selenium(IV)–OMePT complex in chloroform were 3.312 × 102 L mol?1cm?1 and 0.2384 µg cm?2, respectively. The composition of selenium(IV)–OMePT complex was 1:2 established from slope ratio method, mole ratio method and Job’s continuous variation method. The complex was stable for more than 72 h. The interfering effect of various foreign ions was studied and suitable masking agents were used wherever necessary to enhance the selectivity of the developed method. The proposed method was successfully applied for the determination of selenium(IV) from real samples, viz. pharmaceutical formulations, shampoo, vegetable sample, synthetic mixtures and environmental samples. Repetition of the method was checked by finding the relative standard deviation (RSD) for 10 determinations which was 0.35%.  相似文献   

7.
ABSTRACT

In this paper, a novel, simple, selective and effective solid phase extraction method based on ion-imprinted polymer (IIP) technology and flame atomic absorption spectrometry (FAAS) for separation and pre-concentration of trace amounts of titanium (IV) ions was reportd?. It was obtained by precipitation polymerisation by using 2-(2,4-dihydroxyphenyl)-3,5,7-trihydroxychromen-4-one titanium (IV) complex abbrivated as Ti(IV)-(morin), as the template molecule. After polymerisation, leaching the polymer in HNO3 (50% (v/v) solution caused formation cavities in the polymer. Characterisation studies of the ?Ti(IV)-imprinted polymer (Ti-IP) was performed by FT-IR, UV-Vis and scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) techniques and then, the effective factors on extraction were optimised. A sensitive response to Ti(IV) within a concentration range between 0.01 and 4.0 μg mL?1 was achieved under the optimum conditions. A total of 10.0 ng mL?1 and 80.0 mg g?1 were obtained as limit of detection (LOD, 3Sb/m) and maximum adsorption capacity, respectively. The relative standard deviation (RSD) for eight replicates detections of 0.2 μg mL?1 of Ti(IV)? was found to be 2.8%. By this method, pre-concentration factor (PF) of 100 was obtained. Successfully applying this method in the water and standard samples, reasonable results were obtained for the extraction and pre-concentration of the titanium ions.  相似文献   

8.
1-(2-Hydroxy-4-methoxybenzophenone)-4-phenylthiosemicarbazone (HMBPT) was investigated as a new reagent for the flotation of vanadium(IV). At pH approximately 1.5, vanadium(IV) forms a 1:1 pale-violet complex with HMBPT in aqueous solution. An intense clear violet layer was formed after flotation, by adding an oleic acid (HOL) surfactant. The composition of the float was 1:1 [V(IV)]:[HMBPT]. A highly selective and sensitive spectrophotometric procedure was proposed for the determination of microamounts of V(IV) as its floated complex. The molar absorptivities of the V(IV)-HMBPT and V(IV)-HMBPT-HOL systems were 0.4 x 10(4) and 0.12 x 10(5) L mol(-1) cm(-1) at 560 nm, respectively. The formation constants of the species formed in the presence and absence of HOL were 4.6 x 10(7) and 8.7 x 10(5) L mol(-1), respectively. Beer's law was obeyed up to 1 x 10(-4) mol L(-1) in the aqueous layer as well as in the oleic acid layer. The HMBPT-V(IV) complexes formed in the aqueous solution and scum layer were characterized by elemental analysis, infrared and UV spectrophotometric studies. The mode of chelation between V(IV) and HMBPT is proposed to be due to a reaction between the protonated bidentate HMBPT ligand and V(IV) through the S=C and N=C groups. Interferences from various foreign ions were avoided by adding excess HMBPT and/or Na2S2O3 as a masking agent. The proposed flotation method was successfully applied to the analysis of V(IV) in synthetic mixtures, wastes of power stations, simulated samples and in real ores. The separation mechanism is discussed.  相似文献   

9.
《Analytical letters》2012,45(20):2349-2357
Abstract

A sensitive and selective method for the extraction and spectrophotometric determination of Zr(IV) with N-p-chlorophenyl-3,4-,5-trimethoxycinnamohydroxamic acid (PTCHA) has been developed. The binary complex of Zr(IV)-PTCHA is extracted from 2–6 M HCl into chloroform, having a maximum absorbance at 385 nm; molar absorptivity 2.1 × 104 1 mol?1 cm?1. A ternary complex with xylenol orange (Zr-PTCHA-XO) have been studied in chloroform-ethanol media, which absorbs at 540 nm; molar absorptivity 4.3 × 104 1 mol?1 cm?1. The present method is applied for the analysis of zirconium in standard samples.  相似文献   

10.
The cloud point extraction behavior of Sn(II) and Sn(IV) using alpha-polyoxometalate and mixed surfactants solution was investigated. The mixture of a nonionic surfactant (Triton X-100) and a cationic surfactant (CTAB) was utilized as a suitable micellar medium for preconcentration and extraction of tin complexes. Sn(II) in the presence of Sn(IV) was extracted with alpha-polyoxometalate, 0.3% (w/v) Triton X-100 and 3.5x10(-5) mol L(-1) CTAB at pH 1.2. Whereas the pH value of 3.7 were used for the individual determination of Sn(II) and Sn(IV) and also for total tin determination at the same conditions. Enrichment factors of 100 were obtained for the preconcentration of both metal ions. Under the optimal conditions, linearity was obeyed in the ranges of 55-670 microg L(-1) of Sn(II) and 46-750 microg L(-1) of Sn(IV) ion concentration. The detection limit of the method was also found to be 12.6 microg L(-1) for Sn(IV) and 8.4 microg L(-1) for Sn(II). The relative standard deviation of seven replicate determination of 100 microg L(-1) both metal ions were obtained about 2.4%. The diverse ion effect of some anions and cations on the extraction efficiency of target ions were tested. Finally, the optimized conditions developed were successfully utilized for the determination of each metal ion in various alloy, juice fruit, tape and waste water samples with satisfactory results.  相似文献   

11.
Trace amounts of titanium(IV) were determined with a simple and selective method based on cloud point extraction. Preconcentration of titanium from aqueous solution was performed using Triton X-114 surfactant and 4-(2-pyridylazo) resorcinol as complexing agent. After centrifugation, the surfactant- rich phase was removed, diluted with water and ethanol, transferred into a 500 μL quartz cell, and its absorbance was measured at 520 nm. The effect of experimental conditions influencing the extraction process was considered. In the optimum conditions, linearity ranges was 0.01–0.1 with the correlation coefficients (R2) of 0.9903. The limits of detection was 0.005. The method was successfully used for the determination of titanium(IV) in the samples of ore and river water with relative recovery of 98?99%.  相似文献   

12.
A very simple, ultra-sensitive and fairly selective direct spectrophotmetric method is presented for the rapid determination of lead(II) at ultra-trace level using 1,5-diphenylthiocarbazone (dithizone) in micellar media. The presence of the micellar system avoids the previous steps of solvent extraction and reduces the cost and toxicity while enhancing the sensitivity, selectivity and the molar absorptivity. The molar absorptivities of the lead-dithizone complex formed in the presence of the cationic cetyltrimethylammonium bromide (CTAB) surfactants are almost ten times the value observed in the standard method, resulting in an increase in the sensitivity of the method. The reaction is instantaneous and the absorbance remains stable for over 24 h. The average molar absorption coefficient was found to be 3.99 x 10(5) L mol(-1) cm(-1) and Sandell's sensitivity was 30 ng cm(-2) of Pb. Linear calibration graphs were obtained for 0.06-60 mg L(-1) of Pb(II); the stoichiometric composition of the chelate is 1:2 (Pb:dithizone). The interference from over 50 cations, anions and complexing agents has been studied at 1 mg L(-1) of Pb(II). The method was successfully used in the determination of lead in several standard reference materials (alloys and steels), environmental water samples (potable and polluted), biological samples (human blood and urine), soil samples and solutions containing both lead(II) and lead(IV) and complex synthetic mixtures. The method has high precision and accuracy (sigma = +/-0.01 for 0.5 mg L(-1)).  相似文献   

13.
Summary Vanadium(IV) and (V) can be quantitatively extracted with 0.2 mol/l Amberlite LA-2 in xylene at pH 3.0 from 0.02 mol/l malonic acid, stripped with 0.5 mol/l hydrochloric acid, and determined spectrophotometrically. Five other liquid anion exchangers (Amberlite LA-1, Primene JM-T, Aliquat 336S, TOA and TIOA) were examined as possible extractants. The extraction of vanadium(IV) was found to be quantitative only with Amberlite LA-2, while that of vanadium(V) was quantitative with Amberlite LA-1 and LA-2, Primene JM-T and Aliquat 336S. Eight common solvents were tested as diluents; of these hexane, cyclohexane, benzene, and xylene were found to be satisfactory. Vanadium was separated from elements that do not form anionic complexes with malonic acid by selective extraction, from those that form weak complexes by washing the organic extract with water, and from metals that form strong malonato complexes by selective stripping with hydrochloric, nitric, or sulphuric acid. The method has been applied to the determination of vanadium in steel, coal fly ash and fuel oil. The precision of measurement is within ±5% and the detection limit of the method for vanadium is 0.5 mg/kg.  相似文献   

14.
Khalifa ME  Hafez MA 《Talanta》1998,47(3):547-559
The ternary purple coloured complex formed between Th(4+), bromocresol orange (BCO) and cetylpyridinium bromide (CPB) in acidic medium was investigated spectrophotometrically. Results obtained revealed the formation of 1:1:1, Th:BCO:CPB complex in aqueous solution at pH approximately 0.5 with a logarithmic conditional stability constant of 12.04+/-0.1, I=0.1 at 25 degrees C. The colour of the ternary complex was used for the determination of thorium(IV) in the range of 0.02-2.6 mug ml(-1) Th(4+), =9.2x10(4) l mol(-1) cm(-1) at 560 nm. Beside its high sensitivity, the reaction was also proved to be highly selective for Th(4+). Thorium(IV) was determined in presence of great number of transition metal ions, rare earths and different anions. Th(4+) was also determined with high accuracy and precision by its titration with disodium ethylenediaminetetraacetate (Na(2)EDTA) using BCO as an indicator at pH approximately 0.5. The endpoint was detected either visually or spectrophotometrically (lambda=550 nm). The proposed procedures were successfully applied for the determination of Th(4+) in standard Th-U ores and in a series of naturally occurring ores or minerals containing thorium. A spectrophotometric method was also described for the determination of fluoride ion, which was based upon the decrease in colour intensity of the Th-BCO complex on mixing it with F(-) ion. The proposed method was convenient, rapid and sensitive for fluoride. It could be used for the determination of fluoride ion in the 0.02-3.00 mug ml(-1) range (S.D.+/-0.9%). The proposed method was successfully applied for direct determination of F(-) ion in water obtained from different origins and the results were satisfactory.  相似文献   

15.
The synthesis, spectroscopic characteristics and analytical applications of 1,2-cyclo-hexanedione bis-benzoylhydrazone are reported. The reaction of this new compound with titanium(IV) has been studied spectrophotomelrically. An orange 1:2 metal/ligand complex (lambda(max)= 477 nm, = 1.05 x 10(4) l.mole(-1).cm(-1)) is formed at pH 1.75-3.0 in 3:2 v v ethanol-water medium. The method is simple and selective and has been satisfactorily applied to the determination of titanium in bauxite, Portland cement, amphibolites and granites.  相似文献   

16.
A solid-phase micro-extraction (SPME) method using an SPME fiber device and graphite furnace (GF) for extracting Se compounds was proposed. Various factors affecting the derivatization and extraction of Se(IV) by SPME-GF were evaluated, including the effect of acid (type and concentration), the concentration of the derivatizing agent, the derivatization temperature, the extraction and derivatization times and the extraction temperature. After optimizing these conditions, the quantification of Se(IV) was performed by Gas Chromatography-Mass Spectrometry (GC-MS). The limit of detection was 0.37 μg L(-1) for Se(IV). The method was successfully applied to the total Se determination in certified reference materials (BCR-414 and SRM 1643e). A recovery of 97% was obtained for water (SRM 1643e). After microwave oven decomposition and the reduction of selenium using a mixture of 2 mol L(-1) HCl and 1% (w/v) KBr, a recovery of 101% and a relative standard deviation of 3.5% were attained for plankton (BCR-414). The SPME-GF method combined with GC-MS was also applied to the determination of the total selenium in a drug sample (selenium chelate).  相似文献   

17.
A rapid, selective, and low-cost chiral capillary electrophoretic method was developed for the simultaneous analysis of hydroxychloroquine (HCQ) and its three chiral metabolites: desethylchloroquine (DCQ), desethylhydroxychloroquine (DHCQ), and bisdesethylchloroquine (BDCQ) in the microsomal fraction of liver homogenates. After liquid-liquid extraction using toluene as extracting solvent, the drug and metabolites were resolved on a fused-silica capillary (50 microm ID, 50 cm total length, and 42 cm effective length), using 100 mmol/L of Tris/phosphate buffer, pH 9.0 containing 1% w/v sulfated-beta-CD and 30 mg/mL hydroxypropyl-beta-CD. Detection was carried out at 220 nm. The extraction procedure was efficient in removing endogenous interferents, and low values (相似文献   

18.
Raychaudhuri A  Roy SK  Chakraburtty AK 《Talanta》1992,39(10):1377-1382
A simple procedure for selective sorption of tungsten is described. The method involves reduction of W(VI) to W(V) with tin(II) chloride (2%, w/v) at 8-9M hydrochloric acid, formation of the W(V)-SCN complex with 0.2M KSCN and its sorption on polyurethane foam within 20 min. The sorbed complex is then eluted with acidified acetone (1 ml of 1M hydrochloric acid and 8 ml of acetone) followed by addition of 1 ml of 0.1M KSCN to the eluent. The method has been applied to the spectrophotometric determination of tungsten in steels and silicates by measuring the absorbance of the eluted solution at 400 nm. Beer's law is obeyed for the range 0.1-12 mug W/ml. Other elements, e.g., Co(III) (50 mug/ml), Cu(II) (10 mug/ml), Ti(IV) (20 mug/ml), V(V) (10 mug/ml) and Mo(VI) (0.5 mug/ml) have no effect on the method. Interference of copper, up to 100 mug/ml has been eliminated by masking with thiourea and that due to molybdenum by prior separation with thioglycollic acid on PUF. The method has been verified with standard samples.  相似文献   

19.
《Analytical letters》2012,45(5):863-877
Abstract

This paper describes a highly sensitive and selective extraction spectrophotometric method for determination of trace germanium in natural water with new a chromogenic reagent methybenzeneazosalicylfluorone abbreviated as MBASF, in which a typical room temperature ionic liquid, 1‐butyl‐3‐methylimidazolium hexafluorophosphate abbreviated as [C4mim][PF6] was used as novel medium for liquid/liquid extraction of germanium(IV). In the presence of TritonX‐100, MBASF reacted with germanium(IV) to form a red complex rapidly, the complex was then extracted into the [C4mim][PF6] phase, the absorbance of the complex in ionic liquid at 496 nm was recorded and used to determine trace germanium(IV). The apparent molar absorptivity of the complex and the detection limit for the real sample were found to be 3.12×106 L mol?1 cm?1 and 0.2 ng mL?1, respectively. The absorbance of the complex at 496 nm increases linearly with the concentration up to 4 µg of germanium (IV) in 250 mL of aqueous solution. The interference study show the determination of germanium is free from the interference of almost all positive and negative ions found in the natural water samples. The determination of germanium in natural water was carried out by the present method and electrothermal atomic absorption spectrometry (AAS). The results were satisfactorily comparable so that the applicability of the proposed method was confirmed using the real samples. Moreover, the extraction mechanism with the ionic liquid system was also investigated. We think the extraction performance of the ionic liquid system is a combination of ion‐pairing effect between imidazolium cation and basic solute in the aqueous phase with the dissolution of polar molecule in ionic liquid phase. A wise choice of the appropriate combination of anion with imidazolium cation hydrophobicity allows playing with solute selectivity.  相似文献   

20.
It is suspected that all the natural estrogens occurring in the human body, as well as dietary and synthetic estrogens, diversely affect the endocrine system depending on their exposure patterns. More rapid, reliable and accurate measurements of these compounds in various biological matrices are thus becoming an important task. After solid-phase extraction using an Oasis HLB extraction cartridge, the estrogen concentrates were derivatized with a mixture of N-methyl-N-trifluorotrimethylsilylacetamide/ammonium iodide/dithioerythritol (1000:4:5, v/w/w) for analysis by gas chromatography/mass spectrometry in the selected ion-monitoring (SIM) mode. The qualitative identification of estrogens detected in SIM mode was further confirmed by tandem mass spectrometry using low-energy collision-induced dissociation (CID) mode. The method for the assay of the 20 estrogens was linear over the ranges of 1-1000 micro g/L for biological fluids and 1-200 micro g/kg for hair with high correlation coefficient (>0.99). The limits of quantitation (LOQ) ranged from 1.0-10 micro g/L (or micro g/kg) and the limit of detection ranged from 0.2-3 micro g/L (or micro g/kg). The average precision (% CV) and accuracy (% bias) of the method determined at the LOQ, low, and medium concentrations were in the ranges 2.6-9.2 and -4.1-7.7, respectively. The average extraction recovery of the estrogens from plasma and hair at the three concentration levels varied in the ranges 77-103% (1.9-14.3% CV) and 73-104% (3.1-14%), respectively. The distribution patterns of the estrogens were characteristic of each biosample. Five estrogens in the range 1.5-44.9 micro g/L were measured in breast milk, 8 estrogens in the range 3.5-322 micro g/L in plasma, 12 estrogens at 1.2-442 micro g/L in urine, and biochanin-A at 13.2-39.1 micro g/kg in hair. Because of its high sensitivity, good precision and specificity, the present method was found suitable for the trace analysis of dietary and synthetic estrogens in complex biosamples such as breast milk, plasma, urine and hair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号