首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The metal complex stability constants of Th(IV) with desferrioxamine B (DFO) and three octadentate derivatives [N-(2,3-dihydroxy-4-carboxybenzoyl)desferrioxamine B (DFOCAMC), N-(1,2-dihydro-1-hydroxy-2-oxopyridin-6-yl)carbonyl)desferrioxamine B (DFO-1,2-HOPO) and N-(2,3-dihydroxy-4-(methylamido)benzoyl)desferrioxamine B (DFOMTA)] have been determined. The formation constant of the Pu(IV)/DFOMTA complex has also been determined, and the formation constants have been estimated for the other Pu(IV) complexes of octadentate DFO derivatives. The DFO derivatives form 1:1 complexes with Th(IV) in aqueous solution. The solution chemistry of the Th(IV) complexes has been studied by spectrophotometric, potentiometric and proton NMR titrations. The Th(IV) formation constants are as follows (log K(f) values and esd's): DFO, 26.6(1); DFOMTA, 38.55(5); DFOCAMC, 37.2(3); DFO-1,2-HOPO, 33.7(4). The Pu(IV)/DFOMTA formation constant, determined by competitive spectrophotometric titration is (log K(f) value) 41.7(2). The estimation of the other Pu(IV) formation constants are as follows (log K(f) values): DFOCAMC, 40.4; DFO-1,2-HOPO, 36.9. The selectivity of DFO and the three derivatives for actinide(IV) ions is discussed.  相似文献   

3.
The ligand N,N'-diethyl-2,3-dihydroxyterephthalamide (ETAM) has been characterized as a chelator for Zr(IV), Ce(IV), and Th(IV). The K(+) salts of the complexes [Zr(ETAM)(4)](4)(-), [Ce(ETAM)(4)](4)(-), and [Th(ETAM)(4)](4)(-) were prepared in a MeOH solution containing H(2)ETAM, the corresponding M(acac)(4), and 4 equiv of KOH. Single-crystal X-ray diffraction analyses are reported for K(4)[Zr(ETAM)(4)] (C2/c, Z = 8, a = 27.576(3) A, b = 29.345(3) A, c = 15.266(2) A, alpha = 90 degrees, beta = 118.688(4) degrees, gamma = 90 degrees ), [Me(3)BnN](4)[Th(ETAM)(4)] (P, Z = 2, a = 13.7570(3) A, b = 13.9293(3) A, c = 26.9124(6) A, alpha = 99.941(1) degrees, beta = 94.972(1) degrees, gamma = 103.160(1) degrees ), and the dimeric (NMe(4))(4)[Th(ETAM)(3)MeOH](2) (P2(1)/c, Z = 4, a = 18.2603(9) A, b = 18.5002(9) A, c = 19.675(1) A, beta = 117.298(1) degrees ). Solution thermodynamic studies were used to determine formation constants (log K(f) and esd) for Th(IV)-ETAM log K(110) =17.47(1), log K(120) = 13.23(1), log K(130) = 8.28(3), log K(140) = 6.57(6), and log beta(140) = 45.54(5). These results support the hypothesis that the terephthalamides are high-affinity chelators for the actinide(IV) ions and thus promising ligands for use in nuclear waste remediation.  相似文献   

4.
Aqueous complexation of Th(IV), U(IV), Np(IV), Pu(III/IV), and Ce(III/IV) with DTPA was studied by potentiometry, absorption spectrophotometry, and cyclic voltammetry at 1 M ionic strength and 25 °C. The stability constants for the 1:1 complex of each trivalent and tetravalent metal were calculated. From the potentiometric data, we report stability constant values for Ce(III)DTPA, Ce(III)HDTPA, and Th(IV)DTPA of log β(101) = 20.01 ± 0.02, log β(111) = 22.0 ± 0.2, and log β(101) = 29.6 ± 1, respectively. From the absorption spectrophotometry data, we report stability constant values for U(IV)DTPA, Np(IV)DTPA, and Pu(IV)DTPA of log β(101) = 31.8 ± 0.1, 32.3 ± 0.1, and 33.67 ± 0.02, respectively. From the cyclic voltammetry data, we report stability constant values for Ce(IV) and Pu(III) of log β(101) = 34.04 ± 0.04 and 20.58 ± 0.04, respectively. The values obtained in this work are compared and discussed with respect to the ionic radius of each cationic metal.  相似文献   

5.
From the absorption spectra it has been concluded that Pd(II) forms a 1:1 complex with pyridine-2,6-dicarboxylic acid in aqueous solution at pH 2. The influence of various concentrations of chloride on the spectr has been examined. Ternary complex formation with chloride does not occur to a measurable extent. The conditional stability constant has been determined from data collected near the equivalence point of the titration curve. With allowance for the different side-reactions in this medium at an ionic strength of 0.2, a value of log K = 16.0 +/- 0.2 has been found for the stability constant.  相似文献   

6.
Organotin(IV) complexes with the formulas [(C6H5)3Sn(mbzt)] (1), [(C6H5)3Sn(cmbzt)] (3), and [(C6H5)2Sn(cmbzt)2] (4) (Hmbzt = 2-mercaptobenzothiazole and Hcmbzt = 5-chloro-2-mercaptobenzothiazole) have been synthesized and characterized by elemental analysis; FT-IR, Raman, 1H, 13C, and 119Sn NMR, and M?ssbauer spectroscopic techniques; and X-ray crystallography at various temperatures. The crystal structures of complexes 1, 3, and 4 were determined by X-ray diffraction at room temperature [295(1) or 293(2) K]. The complexes [(C6H5)3Sn(mbzo)] (2) and [(n-C4H9)2Sn(cmbzt)2] (5) (Hmbzo = 2-mercaptobenzoxazole) were synthesized by new improved methods, and their structures were determined at low temperature [100(1) K] and compared to those solved at room temperature. Comparison with {(CH3)2Sn(cmbzt)2]} (6), already reported, was also attempted. The influence of temperature on the geometry of the complexes is discussed. In the cases of complexes 1-3, three carbon atoms from phenyl groups and one sulfur atom and one nitrogen atom from thione ligands form a tetrahedrally distorted trigonal-bipyramidal geometry around the five-coordinate tin(IV) ion. In complexes 4-6, two carbon atoms from aryl groups and two sulfur atoms and two nitrogen atoms from thione ligands form a distorted tetrahedral geometry, tending toward octahedral, around the six-coordinate tin(IV) ions, with trans-C2, cis-N2, and cis-S2 configurations. Although the C-Sn and S-Sn bond distances are found to be constant in compounds 1-6, their N-Sn bond lengths vary significantly (from 2.635 to 3.078 A), with the longer distances found in the cases of five-coordinate complexes 1-3.  相似文献   

7.
New organotin(IV) ascorbates of the general formulae R(3)Sn(HAsc) (where R = Me , n-Pr, n-Bu and Ph) and R(2)Sn(Asc) (where R = n-Bu and Ph) have been synthesized by the reaction of R(n)SnCl(4-n) (where n = 2 or 3) with monosodium-l-ascorbate. The bonding and coordination behaviour in these complexes are discussed on the basis of UV-Vis, IR, Far-IR, (1)H and (13)C NMR, and (119)Sn Mossbauer spectroscopic studies. L-Ascorbic acid acts as a monoanionic bidentate ligand in R(3)Sn(HAsc) coordinating through O(1) and O(3). The Mossbauer studies together with IR and NMR studies suggest that for these polymeric derivatives, the polyhedron is trigonal bipyramidal around tin with three organic groups in the equatorial positions. In R(2)Sn(Asc), L-ascorbic acid acts as dianionic tetradentate ligand and a polymeric structure with octahedral geometry around tin with trans organic groups has been tentatively proposed. The complexes have been assayed for their anti-inflammatory and cardiovascular activity. Ph(2)Sn(Asc) has been found to show the highest activity among the studied complexes. It is suggested on the basis of potentiometric studies of Me(2)Sn(IV) and Me(3)Sn(IV) systems with L-ascorbic acid that under physiological conditions (pH = 7.0) Me(2)Sn(HAsc)(OH) (approximately 60%), Me(2)Sn(OH)(2) (approximately 40%) and Me(3)Sn(HAsc) (approximately 60%), Me(3)Sn(OH) (approximately 40%), respectively, are existing, which may be responsible for their biological activities.  相似文献   

8.
A tin(IV) oxoalkoxo cluster with unprecedented architecture has been prepared and characterized by single-crystal X-ray diffraction. The cluster obeys the formula Sn 12O 8(OH) 4(OEt) 28(HOEt) 4 (1) and is based on an elongated centrosymmetric assembly of 12 six-coordinate tin centers, 28 peripheral ethoxy groups (terminal and bridging), 8 oxo bridges (mu2 and mu3), 4 hydroxy bridges (mu2), and 4 ethanol molecules that are all bound to tin atoms and interact strongly, through hydrogen bonds, with an ethoxy group located on a vicinal tin atom. This compound has also been fully characterized in solution by multinuclear 1D and 2D NMR, with all of its (119)Sn, (1)H, and (13)C NMR resonances assigned with respect to the structure. Altogether, the data allowed unambiguous location of the hydroxy groups. Information on the exchange of the ethoxy groups is also presented.  相似文献   

9.
The distribution equilibria of the complexes cadmium-cnha and cadmium-cnha-4-methylpyridine in the water-methyl isobutyl ketone system have been studied at 25 degrees , by using (109)Cd as a radiotracer to measure the metal distribution ratio. A very sensitive method for detection of (109)Cd, based on the use of a liquid scintillator, has been developed. From the graphical treatment of the equilibrium data, it has been deduced that CdL(2) is the complex extracted in the absence of 4-methylpyridine, and that the adduct CdL(2)B is extracted when the second ligand is present. This model has been checked by treating the data with the program LETAGROP-DISTR and the following equilibrium constants have been obtained: stability constants of CdL(2), log beta(1) = 2.82 +/- 0.14, log beta(2) = 5.981 +/- 0.004; distribution constant of CdL(2), log K(DC) = -0.49 +/- 0.01; adduct formation constant of CdL(2)B, log K(s) = 2.70 +/- 0.07.  相似文献   

10.
A series of diorganotin(IV) compounds of the type [R(2)Sn(pca)Cl](3)(R = CH(3); (n)Bu; C(6)H(5); C(6)H(5)CH(2); Hpca = 2-pyrazinecarboxylic acid), R(2)Sn(pca)(2)(mH(2)O)xnH(2)O (m= 1: R = CH(3), n= 2, R =(n)Bu, n= 0; m= 0, n= 0: R =(n)Bu, C(6)H(5), C(6)H(5)CH(2)) and (Et(3)NH)(+)[R(2)Sn(pca)(2)Cl](-)xmH(2)O (m= 0: R = CH(3), (n)Bu, C(6)H(5)CH(2); m= 1: R = C(6)H(5)) have been obtained by reactions of 2-pyrazinecarboxylic acid with diorganotin(iv) dichloride in the presence of sodium ethoxide or triethylamine. All compounds were characterized by elemental, IR and NMR spectra analyses. Except for compounds, and, the others were also characterized by X-ray crystallography diffraction analyses, which revealed that compounds and were trinuclear macrocyclic structures with six-coordinate tin(IV) atoms, compounds and were monomeric structures with seven-coordinate tin(IV) atoms, compounds and were polymeric chain structures with seven-coordinate tin(IV) atoms and compounds and were stannate with seven-coordinate tin(IV) atoms.  相似文献   

11.
The bioavailability and mobility of Pu species can be profoundly affected by siderophores and other oxygen-rich organic ligands. Pu(IV)(siderophore) complexes are generally soluble and may constitute with other soluble organo-Pu(IV) complexes the main fraction of soluble Pu(IV) in the environment. In order to understand the impact of siderophores on the behavior of Pu species, it is important to characterize the formation and redox behavior of Pu(siderophore) complexes. In this work, desferrioxamine B (DFO-B) was investigated for its capacity to bind Pu(IV) as a model siderophore and the properties of the complexes formed were characterized by optical spectroscopy measurements. In a 1:1 Pu(IV)/DFO-B ratio, the complexes Pu(IV)(H2DFO-B)4+, Pu(IV)(H1DFO-B)3+, Pu(IV)(DFO-B)2+, and Pu(IV)(DFO-B)(OH)+ form with corresponding thermodynamic stability constants log beta1,1,2 = 35.48, log beta1,1,1 = 34.87, log beta1,1,0 = 33.98, and log beta1,1,-1 = 27.33, respectively. In the presence of excess DFO-B, the complex Pu(IV)H2(DFO-B)22+ forms with the formation constant log beta2,1,2 = 62.30. The redox potential of the complex Pu(IV)H2(DFO-B)22+ was determined by cyclic voltammetry to be E1/2 = -0.509 V, and the redox potential of the complex Pu(IV)(DFO-B)2+ was estimated to be E1/2 = -0.269 V. The redox properties of Pu(IV)(DFO-B)2+ complexes indicate that Pu(III)(siderophore) complexes are more than 20 orders of magnitude less stable than their Pu(IV) analogues. This indicates that under reducing conditions, stable Pu(siderophore) complexes are unlikely to persist.  相似文献   

12.
Lam WW  Lee MF  Lau TC 《Inorganic chemistry》2006,45(1):315-321
The kinetics of the oxidation of hydroquinone (H(2)Q) and its derivatives (H(2)Q-X) by trans-[Ru(VI)(tmc)(O)(2)](2+) (tmc = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) have been studied in aqueous acidic solutions and in acetonitrile. In H(2)O, the oxidation of H(2)Q has the following stoichiometry: trans-[Ru(VI)(tmc)(O)(2)](2+) + H(2)Q --> trans-[Ru(IV)(tmc)(O)(OH(2))](2+) + Q. The reaction is first order in both Ru(VI) and H(2)Q, and parallel pathways involving the oxidation of H(2)Q and HQ(-) are involved. The kinetic isotope effects are k(H(2)O)/k(D(2)O) = 4.9 and 1.2 at pH = 1.79 and 4.60, respectively. In CH(3)CN, the reaction occurs in two steps, the reduction of trans-[Ru(VI)(tmc)(O)(2)](2+) by 1 equiv of H(2)Q to trans-[Ru(IV)(tmc)(O)(CH(3)CN)](2+), followed by further reduction by another 1 equiv of H(2)Q to trans-[Ru(II)(tmc)(CH(3)CN)(2)](2+). Linear correlations between log(rate constant) at 298.0 K and the O-H bond dissociation energy of H(2)Q-X were obtained for reactions in both H(2)O and CH(3)CN, consistent with a H-atom transfer (HAT) mechanism. Plots of log(rate constant) against log(equilibrium constant) were also linear for these HAT reactions.  相似文献   

13.
Hulanicki A  Jedral W 《Talanta》1976,23(3):259-261
The current efficiency of tin(II) generation has been measured for various electrolytes and electrodes. The best results (>99.9%) were obtained with the paraffin-impregnated graphite electrode in 2M CaCl(2) + 0.2M HCl + 0.2M SnCl(4). In titrations of platinum(IV) with electrogenerated tin(II) in an electrolyte containing chloride or bromide it was found that the presence of platinum(II) or (IV) interferes in the cathodic generation of tin(II). The platinum is reduced to the elemental state at the electrode and causes simultaneous generation of hydrogen which decreases the current efficiency. This effect is more pronounced in chloride media.  相似文献   

14.
A series of (salen)tin(II) and (salen)tin(IV) complexes was synthesized. The (salen)tin(IV) complexes, (salen)SnX(2) (X = Br and I), were prepared in good yields via the direct oxidation reaction of (salen)tin(II) complexes with Br(2) or I(2). (Salen)SnX(2) successfully underwent the anion-exchange reaction with AgOTf (OTf = trifluoromethanesulfonate) to form (salen)Sn(OTf)(2) and (salen)Sn(X)(OTf) (X = Br). The (salen)Sn(OTf)(2) complex was easily converted to any of the dihalide (salen)SnX(2) compounds using halide salts. All complexes were fully characterized by (1)H NMR spectroscopy, mass spectrometry, and elemental analysis, while some were characterized by (13)C, (19)F, and (119)Sn NMR spectroscopy. Several crystal structures of (salen)tin(II) and (salen)tin(IV) were also determined. Finally, both (salen)tin(II) and (salen)tin(IV) complexes were shown to efficiently catalyze the formation of propylene carbonate from propylene oxide and CO(2). Of the series, (3,3',5,5'-Br(4)-salen)SnBr(2), 3i, was found to be the most effective catalyst (TOF = 524 h(-)(1)).  相似文献   

15.
New organotin(IV) complexes of the general formula R3Sn(L) (where R=Me, n-Bu and HL=L-proline; R=Me, Ph and HL=trans-hydroxy-L-proline and L-glutamine) and R2Sn(L)2 (where R=n-Bu, Ph and HL=L-proline; R=Ph, HL=trans-hydroxy-L-proline) have been synthesized by the reaction of RnSnCl(4-n) (where n=2 or 3) with sodium salt of the amino acid (HL). n-Bu2Sn(Pro)2 was synthesized by the reaction of n-Bu2SnO with L-proline under azeotropic removal of water. The bonding and coordination behavior in these complexes have been discussed on the basis of IR and 119Sn M?ssbauer spectroscopic studies in the solid-state. Their coordination behavior in solution has been discussed with the help of multinuclear (1H, 13C and 119Sn) NMR spectral studies. The 119Sn M?ssbauer and IR studies indicate that L-proline and trans-hydroxy-L-proline show similar coordination behavior towards organotin(IV) compounds. Pentacoordinate trigonal-bipyramidal and hexacoordinate octahedral structures, respectively, have been proposed for the tri- and diorganotin(IV) complexes of L-proline and trans-hydroxy-L-proline, in which the carboxylate group acts as bidentate group. L-glutamine shows different coordination behavior towards organotin(IV) compounds, it acts as monoanionic bidentate ligand coordinating through carboxylate and amino group. The triorganotin(IV) complexes of L-glutamine have been proposed to have trigonal-bipyramidal environment around tin. The newly synthesized complexes have been tested for their antiinflammatory and cardiovascular activities. Their LD50 values are >1000 mg kg-1.  相似文献   

16.
The kinetics of hexachloroplatinate(IV) oxidation of uranium(IV) ion in aqueous perchloric acid solutions at a constant ionic strength of 1.0 mol dm(-3) has been investigated using the stopped-flow and conventional spectrophotometric techniques. The oxidation reaction was found to proceed through two distinct stages. The initial stage was found to be relatively fast corresponding to the formation of [(H(2)O)(n)U(IV)·Cl(6)Pt(IV)](2+) binuclear intermediate complex (with the rate constant k(1) = 1.75 × 10(4) dm(3) mol(-1)s(-1), k(-1) = 6.8 s(-1), and the formation constant K = 2.6 × 10(3) dm(3) mol(-1) at [H(+)] = 1.0 mol dm(-3) and 25 °C for binuclear formation). This stage was followed by a much slower stage corresponding to the transfer of two electrons from U(IV) to Pt(IV) in the rate-determining step (with the rate constant k = 5.32 × 10(-5) s(-1) at [H(+)] = 1.0 mol dm(-3) and 25 °C). The reaction stoichiometry was found to depend on the molar ratio of the reactants concentration. The experimental results indicated the decrease of the observed first-order rate constants with increasing the [H(+)] for the decomposition of the binuclear intermediate complex through the slow-second stage, whereas no change was observed with respect to the rate of formation of the binuclear complex at the initial rapid part. A tentative reaction mechanism consistent with the kinetic results is discussed.  相似文献   

17.
The formation and stability of some carboxylate and hydroxycarboxylate (acetate, 1,2,3-propanetricarboxylate, 1,2,3,4-butanetetracarboxylate, malate and citrate) complexes of monomethyltin trichloride was studied potentiometrically at 25 degrees C and at different ionic strengths in NaNO3 aqueous solution. The following quite stable species are formed in the different systems (M = CH3Sn3+): ML(OH)+, ML2(OH)0, ML(OH)2(0) and M2L(OH)5(0) for acetate; MLH+, ML0, ML(OH)- and ML(OH)2(2-) for propanetricarboxylate; MLH2+, MLH0, ML-, ML(OH)2- and ML(OH)2(3-) for butanetetracarboxylate; ML(OH)0, ML(OH)2- and ML(OH)3(2-) for malate; ML0, ML(OH)-, ML(OH)2(2-) and ML(OH)3(3-) for citrate. Hydroxycarboxylate complexes are significantly stronger than simple carboxylate ones and this is likely to be due to the interaction of the -OH group in citrate and malate with monomethyltin(IV), whose strength was also quantified. It was found that the stability of these complexes can be roughly expressed by the simple relationship log K = a zeta, where zeta is the product of the charges of reactants and log K is the equilibrium constant. For simple carboxylic ligands we have a = 1.8 +/- 0.4 and, for hydroxycarboxylic ligands, a = 3.7 +/- 0.9. Other useful empirical relationships are reported. Moreover, hydroxycarboxylic complexes also play a prominent role in the speciation of monomethyltin(IV) under the pH conditions of interest for natural fluids.  相似文献   

18.
Rigid chelates of high-molecular weight, [M(tpy-DTTA)2]6- (M = Fe, Ru), are obtained upon self-assembly around one M(II) ion of two terpyridine-based molecules substituted in the 4'-position with the polyaminocarboxylate diethylenetriamine-N,N,N',N'-tetraacetate, tpy-DTTA4-. The protonation constants of tpy-DTTA4- (log K1 = 8.65(4), log K2 = 7.63(4), log K3 = 5.25(6), log K4 = 3.30(7)) and [Fe(tpy-DTTA)2]6- (log K1 = 8.40(4), log K2 = 7.26(4)) have been determined by potentiometry, 1H NMR and UV-vis titrations. The thermodynamic stability constant log K(GdL) of [Fe(tpy-DTTA)2Gd2(H2O)4] measured at 25 degrees C by potentiometry is 10.87. This relatively low value is due to the direct linkage of the polyaminocarboxylate part to the electron-withdrawing terpyridine. UV-vis absorbance spectra of [M(tpy-DTTA)2Gd2(H2O)4] and 1H NMR spectra of [M(tpy-DTTA)2Eu2(H2O)4] revealed similar solution behavior of the Fe and Ru complexes. An I(d) water-exchange mechanism (DeltaV++ = +6.8 +/- 1 cm3 mol(-1)) with a rate constant of k(ex)298 = (5.1 +/- 0.3) x 10(6) s(-1) has been found for [Fe(tpy-DTTA)2Gd2(H2O)4] by 17O NMR. A slow rotational correlation time (tau(RO) = 410 +/- 10 ps) and the presence of two water molecules (q = 2) in the coordination inner-sphere of each Gd(III) ion have also been determined for this complex. A remarkably high relaxivity has been observed for both [M(tpy-DTTA)2Gd2(H2O)4] complexes (at 20 MHz and 37 degrees C, r(1) = 15.7 mM(-1) s(-1) for the Fe complex, and r(1) = 15.6 mM(-1) s(-1) for the Ru complex).  相似文献   

19.
The four organotin (IV) compounds ([2,6-bis(dimethylaminomethyl)phenyl](n-butyl)R(1)R(2)stannane, with R(1)=R(2)=nBu (1), R(1)=nBu, R(2)=Cl (2), R(1)=nBu, R(2)=Br (3) and R(1)=R(2)=Br (4)), have been prepared and their structures have been investigated in various solvents and at various temperatures (NMR). The structures of these compounds in solution are solvent- and temperature-dependent. The solid state structures of 2 and 3 were studied using CP/MAS NMR spectroscopy and Xray diffraction techniques. The tetraorganotin compound 1 exhibits tetrahedral geometry with very weak Sn-N coordination. The dynamic process of Sn-N bond(s) association/dissociation was observed using low-temperature NMR measurements. The tin central atom in 2 and 3 is [4+2]-coordinated in toluene solutions and the NMR low-temperature measurements reveal the same dynamic behavior as for 1 in this solution, with retention of the covalent halogen-tin bond. However, this bond is dissociated in methanol solutions, yielding ionic species, where the tin atom is only [3+2]-coordinated, and the halogen atom lies outside of the primary coordination sphere of the tin atom. In addition, while the same ionic structure as in methanol was found in the whole measured temperature range in the chloroform solution of 3, the structure of 2 varies in this solvent. In this compound, the covalent Sn-Cl bond (similar structure as in toluene solution), which is retained at room temperature in chloroform solution, is continuously dissociated with a decrease in temperature, leading to ionic bonding (a similar structure as in methanol solution). All the above-mentioned processes are reversible in all the solvents and at all temperatures. In the solid state, the covalent Sn-Cl bond is observed for 2, while an ionic bond was found in 3.  相似文献   

20.
This study describes experiments on sedimentestuarine water slurries originating from a Spartina alterniflora salt marsh. We investigated the fate of tin(IV) or monomethyltin cation (MeSn3+) chlorides after their additon to slurries under anaerobic and aerobic conditions. We did not observe methylation of tin in anaerobic or aerobic slurries with and without added tin(IV). MeSn3+-amended samples occasionally formed small amounts of Me2Sn2+ or Me3Sn+ after extended periods of time, particularly when MeSn3+ remained in solution. The stability of MeSn3+ in slurries demonstrates that the absence of net methylation of tin(IV) is not due to rapid demethylation of MeSn3+ or its further methylation. Inorganic tin concentrations in the aqueous phase of anaerobic slurries spiked with MeSn3+ and unspiked slurries decreased by about 85% in 21 days and remained relatively constant until the end of the 59-day experiments. In similar anaerobic experiments about 25% of the MeSn3+ spike was adsorbed to sediment within 1 h and about 75% was adsorbed within 10 days. The lack of methylation and demethylation reactions in our aerobic and anaerobic slurries, which contrasts with two previous reports, undoubtedly reflects the absence of added nutrients and low concentrations of added tin(IV) in our experiments. We believe that our model experiments more accurately reflect conditions in salt marshes than do previous studies. We conclude that future model studies on methylation of inorganic tin should include. S. alterniflora because it is so prominent in observations of methyltin compounds in the estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号