首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A potentiometric and spectrophotometric investigation on the formation of zinc(II) complexes with Semi-Xylenol Orange (SXO or H(4)L) is reported. In an aqueous solution (mu = 0.1), three 1:1 complex species, MH(2)L, MHL(-), ML(2-), and a 1:2 complex, ML(6-)(2), seem to exist. In a strongly alkaline medium (above pH 12.5) the complexes may dissociate to give zinc hydroxide and L(4-). The formation of a hydroxy complex is not observed. The absorption maxima are at 445 nm (MH(2)L), 466 nm (MHL(-)) and 561 nm (ML(2-)), the molar absorptivities being 2.34 x 10(4), 2.42 x 10(4) and 3.14 x 10(4) 1.mole(-1) .cm(-1) respectively. The formation constants are (at 25 +/- 0.1 degrees ) log K(M)(ML) = 11.84, log K(M)(MHL) = 7.13, log K(M)(MH(2)L) = 2.70, log K(M)(ML(2)) = 16.60.  相似文献   

2.
Preparative paper chromatography is proposed as a suitable method for purification of Xylenol Orange (XO). The last three dissociation constants of pure XO have been determined with the aid of the program SPEKTFOT, the values found being pK(9) = 12.34; pK(8) = 10.66; pK(7) = 6.69 (0.1M KNO(3), 20 +/- 0.5 degrees ). The complexation of zirconium with the purified reagent has been studied and the co-existence of ML and M(2) L complexes proved by use of the program DALSFEK. The following conditional stability constants of the complexes and their molar absorptivities were computed: log beta'(ml) 4.58; log beta'(M(2)L) 11.59; (ML) 2.00 x 10(4); (M(2)L) 9.40x 10(4) l.mole(-1).cm(-1) at 550 nm.  相似文献   

3.
Three DTPA-derivative ligands, the non-substituted DTPA-bis(amide) (L(0)), the mono-substituted DTPA-bis(n-butylamide) (L(1)) and the di-substituted DTPA-bis[bis(n-butylamide)] (L(2)) were synthesized. The stability constants of their Gd3+ complexes (GdL) have been determined by pH-potentiometry with the use of EDTA or DTPA as competing ligands. The endogenous Cu2+ and Zn2+ ions form ML, MHL and M(2)L species. For the complexes CuL(0) and CuL(1) the dissociation of the amide hydrogens (CuLH(-1)) has also been detected. The stability constants of complexes formed with Gd3+, Cu2+ and Zn2+ increase with an increase in the number of butyl substituents in the order ML(0) < ML(1) < ML(2). NMR studies of the diamagnetic YL(0) show the presence of four diastereomers formed by changing the chirality of the terminal nitrogens of their enantiomers. At 323 K, the enantiomerization process, involving the racemization of central nitrogen, falls into the fast exchange range. By the assignment and interpretation of 1H and 13C NMR spectra, the fractions of the diastereomers were found to be equal at pH = 5.8 for YL(0). The kinetic stabilities of GdL(0), GdL(1) and GdL(2) have been characterized by the rates of the exchange reactions occurring between the complexes and Eu3+, Cu2+ or Zn2+. The rates of reaction with Eu3+ are independent of the [Eu3+] and increase with increasing [H+], indicating the rate determining role of the proton assisted dissociation of complexes. The rates of reaction with Cu2+ and Zn2+ increase with rising metal ion concentration, which shows that the exchange can take place with direct attack of Cu2+ or Zn2+ on the complex, via the formation of a dinuclear intermediate. The rates of the proton, Cu2+ and Zn2+ assisted dissociation of Gd3+ complexes decrease with increasing number of the n-butyl substituents, which is presumably the result of steric hindrance hampering the formation or dissociation of the intermediates. The kinetic stabilities of GdL(0) and GdL(1) at pH = 7.4, [Cu2+] = 1 x 10(-6) M and [Zn(2+)] = 1 x 10(-5) M are similar to that of Gd(DTPA)2-, while the complex GdL2 possesses a much higher kinetic stability.  相似文献   

4.
Elenkova NG  Popova E 《Talanta》1975,22(10-11):925-929
The reaction of magnesium or aluminium ions with Eriochrome Cyanin RC in alkaline medium leads to formation of a complex of type ML. The molar absorptivities of the complexes are 1.90 +/- 0.14 x 10(3)1. mole(-1).cm(-1) at 570 nm for the magnesium complex and 3.87 +/- 0.04 x 10(4) at 555 nm for the aluminium complex. The conditional stability constants of the complexes were determined at various pH values, and hence the overall formation constants, which were found to be log beta(111) = 8.65 +/- 0.06 for MgOHL, log beta(121) = 22.29 +/- 0.05 for AlH(2)L, log beta(111) = 18.25 +/- 0.14 for AlHL, and log beta(101) = 13.66 +/- 0.01 for AlL.  相似文献   

5.
Previously reported mono- and dinuclear Zn(II), Cu(II), and Ni(II) complexes of 1,4,7,10-tetrazacyclododecane ([12]aneN4 or cyclen) with different heterocyclic spacers (triazine, pyridine) of various lengths (bi- and tripyridine) or an azacrown-pendant have been tested for the hydrolysis of bis(4-nitrophenyl)phosphate (BNPP) under physiological conditions (pH 7-9, 25 degrees C). All Zn(II) complexes promote the hydrolysis of BNPP under physiological conditions, while those of Cu(II) and Ni(II) do not have a significant effect on the hydrolysis reaction. The hydrolysis kinetics in buffered solutions (0.05 M Bis/Tris, TRIS, HEPES, or CHES, I=0.1 M, NaCl) at 25 degrees C were determined by the initial slope method (product conversion<5%). Comparison of the second-order pH-independent rate constants (kBNPP, M(-1) s(-1)) for the mononuclear complexes ZnL1, ZnL3, and ZnL6, which are 6.1x10 (-5), 5.1x10(-5), and 5.7x10(-5), respectively, indicate that the heterocyclic moiety improves the rate of hydrolysis up to six times over the parent Zn([12]aneN4) complex (kBNPP=1.1x10(-5) M(-1) s(-1)). The reactive species is the Zn(II)-OH- complex, in which the Zn(II)-bound OH- acts as a nucleophile. For dinuclear complexes Zn2L2, Zn2L4, and Zn2L5, the rate of reaction is defined by the degree of cooperation between the metal centers, which is determined by the spacer length. Zn2L2 and Zn2L4 possessing shorter spacers are able to hydrolyze BNPP 1 to 2 orders of magnitudes faster than Zn2L5. The second-order rate constants k of Zn2L4 and Zn2L2 at pH 7, 8, and 9 are significantly higher than those of previously reported related complexes. The high BNPP hydrolytic activity may be related to pi-stacking and hydrophobic interactions between the aromatic spacer moieties and the substrate. Complexes Zn2L4 and Zn2L2 show hydrolytic activity at pH 7 and 8, which allows for the hydrolysis of activated phosphate esters under physiological conditions.  相似文献   

6.
The formation of a labile, presumably "sandwich" type, complex of palladium(II) and palladiazo has been disclosed by differential spectrophotometry. The complex, which is formed within 10 min of mixing of the pertinent solutions, decomposes progressively over a period of 1-2 days to yield an ML complex. The ML(2) complex exhibits an "anomalous" absorption spectrum with two absorption bands with maxima located at 525 (secondary) and 660 (principal) nm, the latter giving a molar absorptivity of 7 x 10(4) l.mole(-1).cm(-1). Possible structures are suggested for the ML(2) and ML complexes.  相似文献   

7.
The inclusion complexes of four ligands binding to cyclodextrins (CDs) were studied by electrospray ionization mass spectrometry (ESI-MS) and the dissociation constants of the complexes were obtained. The 1:1 stoichiometric inclusion complex was found in the system of CD and fenbufen or aspirin. The obtained KD values of the inclusion complexes of fenbufen binding to alpha-CD and to beta-CD are 4.38x10(-4) mol L(-1) and 2.12x10(-4) mol L(-1), respectively. The KD values of the inclusion complexes of alpha-CD-aspirin and beta-CD-aspirin are 3.33x10(-4) mol L(-1) and 1.83x10(-4) mol L(-1), respectively. A non-linear least squares regression method was applied to validate the results which were consistent with each other. For the system of tetracycline hydrochloride and CD, the 1:1 and 1:2 stoichiometric inclusion complexes were found in the mass spectra. The KD,1 and KD,2 values of the 1:1 and 1:2 stoichiometric inclusion complexes of alpha-CD and tetracycline hydrochloride are 4.47x10(-4) mol L(-1) and 6.51x10(-4) mol L(-1), respectively, and those of beta-CD and tetracycline hydrochloride are 2.26x10(-4) mol L(-1) and 8.57x10(-4) mol L(-1), respectively. For the system of norfloxacin and CD, besides the 1:1 and 1:2 inclusion complexes, the 1:3 stoichiometric inclusion complex was also found. The KD,1, KD,2 and KD,3 of alpha-CD and norfloxacin inclusion complexes are 4.61x10(-4) mol L(-1), 6.05x10(-4) mol L(-1) and 1.45x10(-3) mol L(-1), respectively. The three KD values of beta-CD and norfloxacin are 1.96x10(-4) mol L(-1), 4.93x10(-4) mol L(-1) and 1.15x10(-3) mol L(-1), respectively.  相似文献   

8.
Three binuclear Ru complexes cis-,cis-[(NH3)4(L)Ru-pz-Ru(NH3)4(dmso)](PF6)4 (L = NH3 (4), pyridine (5), benzonitrile (6); dmso = dimethyl sulfoxide) have been prepared, and their electrochemical behavior, exhibiting molecular hysteresis, is reported. Simulations of cyclic voltammograms and thin-layer cyclic voltammograms have provided redox potentials, isomerization rates, and interconversion rates of the complexes. The rates of the conversions between two isomeric intermediate states have been determined to be5 x 10(-6) and 4 x 10(-4) s(-1) for the complex 4, 4 x 10(-5) and 4 x 10(-4) s(-1) for the complex 5, and 2 x 10(-4) and 5 x 10(-5) s(-1) for the complex 6. The equilibrium parameters between these states are discussed in relation to the redox potentials of the complexes.  相似文献   

9.
The kinetic study of the spontaneous reduction of some neutral tris-dithiolene complexes [ML3] of molybdenum(VI) and tungsten(VI), (L = S2C6H4(2-), S2C6H3CH3(2-) and S2C2(CH3)2(2-); M = Mo or W) by tetrabutylammonium hydroxide in tetrahydrofuran-water solutions demonstrates that OH- is an effective reductant. Their reduction is fast, clean and quantitative. Depending upon both the molar ratio in which the reagents are mixed and the amount of water present, one- or two-electron reductions of these tris-dithiolene complexes were observed. If Bu4NOH is present in low concentration or/and at high concentrations of water, the total transformation of the neutral M(VI) complex into the monoanionic M(V) complex is the only observed process. Stopped-flow kinetic data for this reaction are consistent with the rate law: -d[ML3]/dt = d[ML3-]/dt = k[ML3][Bu4NOH]. The proposed mechanism involves nucleophilic attack of OH- to form a mono-anionic seven-coordinate intermediate [ML3OH]-, which interacts with another molecule of [ML3] to generate the monoanionic complex [ML3]- transfering the oxygen from coordinated OH- to water. Hydrogen peroxide was identified as the reaction product. The molybdenum complexes are more difficult to reduce than their corresponding tungsten complexes, and the values of k obtained for the molybdenum and tungsten series of complexes increase as the ene-1,2-dithiolate ligand becomes more electron-withdrawing (S2C6H4(2-) > S2C6H3CH3(2-) > S2C2(CH3)2(2-)). This investigation constitutes the only well-established interaction between hydroxide ion and a tris(dithiolene) complex, and supports a highly covalent bonding interaction between the metal and the hydroxide ion that modulates electron transfer reactions within these complexes.  相似文献   

10.
A trinuclear metal complex of general formula (L-H)M3(Mf)2 represents the first allosteric low molecular weight catalyst. L is a polyaza ligand having a tetradentate and two bidentate metal binding sites, Ms is a "structural" (allosteric) metal, and Mf are functional (catalytic) metals which interact with a substrate. In mononuclear [(L-H)Ms]+ complexes [(L-H)Cu(MeOH)]ClO4 (1a). [(L-H)Cu]NO3 x 2H2O (1b), [(L-H)Ni]ClO4 x 4H2O (2), and [(L-H)Pd]ClO4 x 2H2O (3), prepared from L and M2+ salts, the metal is strongly bound by an in-plane N4-coordination (confirmed by X-ray crystal structure determination of la). Formation of trinuclear complexes [(L-H)MsCu2]5+, with two functional Cu2+ ions coordinated to the bidentate sites of L, was evidenced in solution by photometric titration and by isolation of [(L-H)Cu3][PO4][ClO4]2 x 9H2O (4). The trinuclear complexes catalyze the cleavage of RNA-analogue 2-(hydroxypropyl)-p-nitrophenyl phosphate (HPNP), an activated phosphodiester. From a kinetic analysis of the cleavage rate at various HPNP concentrations, parameters KHPNP (the equilibrium constant for binding of HPNP to [(L-H)MsCu2]5+ and kcat (first-order rate constant for cleavage of HPNP when bound to the catalyst) were derived: KM= 170 (Ms= Cu2+), 340 (Ms = Ni2+), 2,600 (Ms = Pd2+) M(-1), kcat = 17 x 10(-3) (Ms= Cu2+) 3.1 x 10(-3) (Ms=Ni2+), 0.22 x 10(-3) (Ms = Pd2+) s(-1). Obviously, the nature of the allosteric metal ion Ms strongly influences both substrate affinity and reactivity of the catalyst [(L-H)MsCu2]5+. Our interpretation of this observation is that subtle differences in the ionic radius of Ms and in its tendency to distort the N4-Ms coordination plane have a significant influence on the conformation of the catalyst (i.e., preorganization of functional Cu2+ ions) and thus on catalytic activity.  相似文献   

11.
Cefadroxil (CD) is an essential pharmaceutical drug used in curing many diseases. Due to its popular use in many pharmaceutical forms, attention is paid in this research to the synthesis and stereochemistry of new iron, cobalt, nickel, copper, and zinc complexes of this drug both in solution and the solid states. The spectra of these complexes in solution and the study of their stoichiometry refer to the formation of 1:1 and 1:2 ratios of metal (M) to ligand (L). The calculated stability constants (Kf) of these complexes (1.5x10(7) to 5x10(13)) and the change in free energy of formation (deltaGf=2.5-12.5 kcal mol(-1) degree(-1)) are indicative of their high stability. The stereo chemical structure of the solid complexes was studied on the basis of their analytical, spectroscopic, magnetic, and thermal data. Infrared spectra proved the presence of M-N and M-O bonds. Magnetic susceptibility and solid reflectance spectral measurements were used to infer the structure. The prepared complexes were found to have the general formulae [ML(OH)x(H2O)y](H2O)z-M: Fe(II), x=0, y=2, z=1; M: Fe(III) and Co(III), x=1, y=2, z=1; M: Co(II) and Zn(II), x=0, y=1, z=0; M: Ni(II) and Cu(II), x=1, y=0, z=1; L: CD. Octahedral and tetrahedral structures were proposed for these complexes depending upon the magnetic and reflectance data and were confirmed by detailed mass and thermal analyses comparative studies.  相似文献   

12.
Chen MH  Lee S  Liu S  Yeh A 《Inorganic chemistry》1996,35(9):2627-2629
Reactions of Fe(CN)(5)L(3-) (L = 4-aminopyridine (4-ampy), pyridine (py), 4,4'-bipyridine (4,4'-bpy), and pyrazine (pz)) with peroxydisulfate, Fe(CN)(5)L(3-) + S(2)O(8)(2-) right harpoon over left harpoon Fe(CN)(5)L(2-) + SO(4)(-) + SO(4)(2-), have been found to follow an outer-sphere electron transfer mechanism. The specific rate constants of oxidation are 1.45 +/- 0.01, (9.00 +/- 0.02) x 10(-2), (5.60 +/- 0.01) x 10(-2), and (2.89 +/- 0.01) x 10(-2) M(-1) s(-1), for L = 4-ampy, py, 4,4'-bpy, and pz, respectively, at &mgr; = 0.50 M LiClO(4), T = 25 degrees C, pH = 4.4-8.8. The rate constants of oxidation for the corresponding Ru(NH(3))(5)L(2+) complexes were also measured and were found to be faster than those of Fe(CN)(5)L(3-) complexes by a factor of approximately 10(2) even after the corrections for the differences in reduction potentials and in the charges of the complexes. The difference in reactivity may arise from the hydrogen bonding between peroxydisulfate and the ammonia ligands of Ru(NH(3))(5)L(2+) and nonadiabaticity observed in the Fe(CN)(5)L(3-) complexes.  相似文献   

13.
The study of some transition metals (M) and amoxicillin trihydrate (ACT) ligand complexes (M-ACT) that formed in solution involved the spectrophotometric determination of stoichiometric ratios and their stability constants and these ratios were found to be M:ACT = 1:1, 1:2 and 2:1 in some instances. The calculated stability constants of these chelates, under selected optimum conditions, using molar ratio method have values ranging from K(f) = 10(7) to 10(14). These data were confirmed by calculations of their free energy of formation deltaG, which corresponded to their high stabilities. The separated solid complexes were studied using elemental analyses, IR, reflectance spectra, magnetic measurements, mass spectra and thermal analyses (TGA and DTA). The proposed general formulae of these complexes were found to be ML(H2O)w(H2O)x(OH)y(Cl)2, where M = Fe(II), Co(III), w = 0, x = 2, y = 1, z = 0; M = Co(II), w = 0, x = 1, y = 0, z = 1; M = Fe(III), w = 0, x = 1, y = 2, z = 0; M = Ni(II), Cu(II) and Zn(II), w = 2, x = 0, y = 1, z = 0, where w = water of crystallization, x = coordinated water, y = coordinated OH(-) and z = Cl- in the outer sphere of the complex. The IR spectra show a shift of nu(NH) (2968 cm(-1)) to 2984-2999 cm(-1) of imino group of the ligand ACT and the absence of nu(CO) (beta-lactame) band at 1774 cm(-1) and the appearance of the band at 1605-1523 cm(-1) in all complexes suggest that 6,7-enolization takes place before coordination of the ligand to the metal ions. The bands of M-N (at 625-520 cm(-1)) and of M-O (at 889-7550 cm(-1)) proved the bond of N (of amino and imino groups) and O of C-O group of the ligand to the metal ions. The reflectance spectra and room temperature magnetic measurements refer to octahedral complexes of Fe(II) and Fe(III); square planner form of Co(II), reduced Co(III), Ni(II) and Cu(II)-ACT complexes but tetrahedral form of Zn-ACT complex. The thermal degradation of these complexes is confirmed by their mass spectral fragmentation. These data confirmed the proposed structural and general formulae of these complexes.  相似文献   

14.
p-Nitrocalix[6]arene (CALX-N6, L) formed a 1:1 metal complex, ML, with light rare earth metal ions (M3+), such as La3+, Pr3+ and Nd3+ except Ce3+, but formed a 1:2 (M(3+):L) complex, ML2 (the charge of the complex is omitted) with heavy rare earth metal ions, such as Sm(3+)-Lu3+ including Y3+. The conditional stability constants of these 1:1 and 1:2 complexes, KML and KML2, were measured by a ligand displacement method using absorption spectrophotometry in 4% (v/v) acetone aqueous solution at pH 9.65 +/- 0.15 and 25 degrees C.  相似文献   

15.
Creutz C  Chou MH 《Inorganic chemistry》2008,47(9):3509-3514
The binding of catechol derivatives (LH 2 = catechol, 4-methyl catechol, 4-t-butyl catechol, and dopamine) to 1- and 4.7-nm TiO2 nanoparticles in aqueous, pH 3.5 suspensions has been characterized by UV-vis spectroscopy. The binding constants derived from Benesi-Hildebrand plots are (2-4) x 10(3) M(-1) for the 1-nm nanoparticles and (0.4-1) x 10(4)M(-1) for the 4.7-nm particles. Ti(IV)L3 complexes were prepared from the same catechols. The L = methyl catechol, and dopamine complexes are reported for the first time. The TiL3 reduction potentials are not very sensitive to the nature of the catechol nor evidently are the binding constants to TiO2 nanoparticles. The intense (epsilon > or = 10(3) M(-1)cm(-1)), about 400-nm, ligand-to-metal charge-transfer (LMCT) absorptions of the nanoparticle complexes are compared with those of the TiL 3 complexes (epsilon approximately 10(4)M(-1) cm(-1)) which lie in the same spectral region. The nanoparticle colors are attributed (as are the colors of the Ti(IV)L3 complexes) to the tails of the about 400-nm LMCT bands.  相似文献   

16.
A new macrocylic Schiff base 1,2,5,6,8,11-hexaazacyclododeca-7,12-dithione-2,4,8,10-tetraene(H(2)L(4)) containing thiosemicarbazone moiety is readily prepared and characterized for the first time with fairly good yield. Macrocylic ligand (H(2)L(4)) is prepared from the mesocyle 6-ethoxy-4-thio-2,3,5-triazine(H(2)L(3)) in ethanol with copper chloride acting as template using high dilution technique. The complexes of macrocylic ligand with a general composition M(H(2)L(4))X(2) [where M=Cu(II) or Ni(II); H(2)L(4)=1,2,5,6,8,11-hexaazacyclo dodeca-7,12-dithione-2,4,8,10-tetraene; X= Cl(-), NO(3)(-), (1)/(2)SO(4)(2-)] and ML(4) (where metal salt used to synthesize complex is copper acetate and nickel thiocyanate) have been synthesized. The complexes were characterized on the basis of elemental analysis, molar conductance, magnetic susceptibility, IR, electronic, 1H NMR, mass and EPR spectral studies. The complexes from H(2)L(4) show different stoichiometry ratio and with a variable grade of deprotonation in the ligand, depending upon the salt used and working conditions.  相似文献   

17.
Cadmium (II) ion-catalyzed degradation of ampicillin in methanol at 20 degrees C has been studied. It has been observed that the rate values tend to saturate when the concentration of ampicillin or the metal ion is increased. The results obtained in the present study suggest that ampicillin degradation occurs through the formation of a 1:1 (SM) and 2:1 (S(2)M) ampicillin-metal complexes. These complexes decompose giving a single product (absorption maximum at 285 nm; ((p)=1.82x10(4) l mol(-1) cm(-1)) that has been isolated and identified (Cd(II) (L(2-))(2) (H(2)O)(4) Na(2)). The appearance of this product reflects a first order reaction with respect to the 1:1 complex, with a rate constant of 3.87x10(-2) min(-1) and the existence of an equilibrium between the 1:1 and 2:1 initial complexes. The equilibrium constant value, calculated from kinetic data, is 1.7x10(3) l mol(-1).  相似文献   

18.
The anion of 4-imidazolecarboxylic acid (HL) stabilizes hydroxo complexes of trivalent lanthanides of the type ML(OH)+ (M = La, Pr) and M2L(n)(OH)(6-n) (M = La, n = 2; M = Pr, n = 2, 3; M = Nd, Eu, Dy, n = 1-3). Compositions and stability constants of the complexes have been determined by potentiometric titrations. Spectrophotometric and (1)H NMR titrations with Nd(III) support the reaction model for the formation of hydroxo complexes proposed on the basis of potentiometric results. Kinetics of the hydrolysis of two phosphate diesters, bis(4-nitrophenyl) phosphate (BNPP) and 2-hydroxypropyl 4-nitrophenyl phosphate (HPNPP), and a triester, 4-nitrophenyl diphenyl phosphate (NPDPP), in the presence of hydroxo complexes of five lanthanides were studied as a function of pH and metal and ligand concentrations. With all lanthanides and all substrates, complexes with the smallest n, that is M2L2(OH)4 for La and Pr and M2L(OH)5 for Nd, Eu, and Dy, exhibited the highest catalytic activity. Strong inhibitory effects by simple anions (Cl-, NO3-, (EtO)2PO2-, AcO-) were observed indicating high affinity of neutral hydroxo complexes toward anionic species. The catalytic activity decreased in the order La > Pr > Nd > Eu > Dy for both diester substrates and was practically independent of the nature of cation for a triester substrate. The efficiency of catalysis, expressed as the ratio of the second-order rate constant for the ester cleavage by the hydroxo complex to the second-order rate constant for the alkaline hydrolysis of the respective substrate, varied from ca. 1 for NPDPP to 10(2) for HPNPP and to 10(5) for BNPP. The proposed mechanism of catalytic hydrolysis involves reversible bridging complexation of a phosphodiester to the binuclear active species followed by attack on the phosphoryl group by bridging hydroxide (BNPP) or by the alkoxide group of the deprotonated substrate (HPNPP).  相似文献   

19.
The bis(beta-diketone) ligands 1,3-bis(3-phenyl-3-oxopropanoyl)benzene, H(2)L(1) and 1,3-bis(3-phenyl-3-oxopropanoyl) 5-ethoxy-benzene, H(2)L(2), have been prepared for the examination of dinuclear lanthanide complex formation and investigation of their properties as sensitizers for lanthanide luminescence. The ligands bear two conjugated diketonate binding sites linked by a 1,3-phenylene spacer. The ligands bind to lanthanide(III) or yttrium(III) ions to form neutral homodimetallic triple stranded complexes [M(2)L(1)(3)] where M = Eu, Nd, Sm, Y, Gd and [M(2)L(2)(3)], where M = Eu, Nd or anionic quadruple-stranded dinuclear lanthanide units, [Eu(2)L(1)(4)](2-). The crystal structure of the free ligand H(2)L(1) has been determined and shows a twisted arrangement of the two binding sites around the 1,3-phenylene spacer. The dinuclear complexes have been isolated and fully characterized. Detailed NMR investigations of the complexes confirm the formation of a single complex species, with high symmetry; the complexes show clear proton patterns with chemical shifts of a wide range due to the lanthanide paramagnetism. Addition of Pirkle's reagent to solutions of the complexes leads to splitting of the peaks, confirming the chiral nature of the complexes. Electrospray and MALDI mass spectrometry have been used to identify complex formulation and characteristic isotope patterns for the different lanthanide complexes have been obtained. The complexes have high molar absorption coefficients (around 13 x 10(4) M(-1)cm(-1)) and display strong visible (red or pink) or NIR luminescence upon irradiation at the ligand band around 350 nm, depending on the choice of the lanthanide. Emission quantum yield experiments have been performed and the luminescence signals of the dinuclear complexes have been found to be up to 11 times more intense than the luminescence signals of the mononuclear analogues. The emission quantum yields and the luminescence lifetimes are determined to be 5% and 220 micros for [Eu(2)L(1)(3)], 0.16% and 13 micros for [Sm(2)L(1)(3)], and 0.6% and 1.5 micros for [Nd(2)L(1)(3)]. The energy level of the ligand triplet state was determined from the 77 K spectrum of [Gd(2)L(1)(3)]. The bis-diketonate ligand is shown to be an efficient sensitizer, particularly for Sm and Nd. Photophysical studies of the europium complexes at room temperature and 77 K show the presence of a thermally activated deactivation pathway, which we attribute to ligand-to-metal charge transfer (LMCT). Quenching of the luminescence from this level seems to be operational for the Eu(III) complex but not for complexes of Sm(III) and Nd(III), which exhibit long lifetimes. The quadruple-stranded europium complex has been isolated and characterized as the piperidinium salt of [Eu(2)L(1)(4)](2-). Compared with the triple-stranded Eu(III) complex in the solid state, the quadruple-stranded complex displays a more intense emission signal with a distinct emission pattern indicating the higher symmetry of the quadruple-stranded complex.  相似文献   

20.
Yttrium reacts with 5-(4'-chlorophenylazo)-6-hydroxypyrimidine-2,4-dione (I), 5-(2'-bromophenylazo)-6-hydroxypyrimidine-2,4-dione (II), 5-(2',4'-dimethylphenylazo)-6-hydroxypyrimidine-2,4-dione (III), 5-(4'-nitro-2',6'-dichlorophenylazo)-6-hydroxypyrimidine-2,4-dione (IV), 5-(2'-methyl-4'-hydroxyphenylazo)-6-hydroxypyrimidine-2,4-dione (V) to form a dark pink complexes, having an absorption maximum at 610, 577, 596, 567 and 585 nm, respectively. The complex formation was completed spontaneously in theil buffer solution and the resulting complex was stable for at least 3 h after dilution. Under the optimum conditions employed, the molar absorptivities were found to be 1.60 x 10(4), 1.29 x 10(4), 1.96 x 10(4), 1.45 x 10(4) and 1.21 x 10(4) l mol(-1) cm(-1) and the molar ratios were (1:1) and (1:2) (M:L). The linear ranges were found within 95 microg of yttrium in 25 ml solution. One of the characteristics of the complex was its high tolerance for calcium and hence a method of separation and enrichment of microamounts of yttrium by using calcium oxalate precipitate was developed and applied to measure yttrium in nickel-base alloys. Interfering species and their elimination have been studied. The precision and recovery are both satisfactory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号