首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chow E  Hibbert DB  Gooding JJ 《The Analyst》2005,130(6):831-837
An electrochemical sensor for the detection of cadmium ions is described using immobilized glutathione as a selective ligand. First, a self-assembled monolayer of 3-mercaptopropionic acid (MPA) was formed on a gold electrode. The carboxyl terminus then allowed attachment of glutathione (GSH)via carbodiimide coupling to give the MPA-GSH modified electrode. A cadmium ion forms a complex with glutathione via the free sulfhydryl group and also to the carboxyl groups. The complexed ion is reduced by linear and Osteryoung square wave voltammetry with a detection limit of 5 nM. The effect of the kinetics of accumulation of cadmium on the measured current was investigated and modeled. Increasing the temperature of accumulation and electrochemical analysis caused an increase in the voltammetric peak of approximately 4% per degrees C around room temperature. The modified electrode could be regenerated, being stable for more than 16 repeated uses and more than two weeks if used once a day. Some interference from Pb(2+) and Cu(2+) was observed but the effects of Zn(2+), Ni(2+), Cr(3+) and Ba(2+) were insignificant.  相似文献   

2.
Kapoor HL  Agrawal YK  Verma PC 《Talanta》1975,22(2):193-196
Cerium and lanthanum were determined gravimetrically by selective precipitation with N-m-tolyl-m-nitrobenzohydroxamic acid and separated from several metal ions such as Ag(+), Be(2+) , Pb(2+) , Mn(2+) , Cu(2+), Zn(2+) , Cd(2+) , Hg(2+) , Pd(2+) , Ga(3+) A1(3+) , Bi(3+) , Sb(3+), Sn(4+), Ce(3+) , Pr(3+) , Nd(3+) , Ti(4+), Zr(4+), Th(4+), V(5+) , Mo(6+) and U(6+) . The precipitates were weighted directly after drying at 110 degrees . The analytical results indicated the composition of the complexes to be (C(14)H(11)N(2)O(4))(n)M.  相似文献   

3.
Yang XF  Guo XQ  Zhao YB 《Talanta》2002,58(5):883-890
A flow injection (FI) method with on-line preconcentration using a mini-column loaded with 8-hydroxyquinoline immobilized on controlled pore glass (CPG-8HQ) is described for the determination of trace metals by ion chromatography (IC) with pyridine-2-6-dicarboxylic acid (PDCA) as the eluent. Copper, cadmium, lead, zinc, nickel and iron were determined at ppb level after post-column derivatization with 4-(2-pyridylazo)-resorcinol (PAR). The detection limits (3sigma) for the FI/IC system were 8.27, 0.89, 0.09, 0.06, 0.09 and 0.07 g l(-1) for Pb(2+), Cd(2+), Cu(2+) Ni(2+), Zn(2+) and Fe(3+), respectively, using 5 ml sample volume. The method was applied to the analysis of Malaysian natural waters.  相似文献   

4.
Hassan SS  Mahmoud WH  Othman AH 《Talanta》1998,47(2):377-385
Ribonucleic acid (RNA) is used as a novel ionophore in plasticized poly(vinyl chloride) matrix membrane sensors for some transition metal ions. Membranes incorporating RNA and doped in Cu(2+), Cd(2+) and Fe(2+) display fast near-Nernstian and stable responses for these ions with cationic slopes of 31.1, 31.3 and 35.5 mV per decade, respectively, over the concentration range 10(-6)-10(-2) M and pH range 4-6.5. The cadmium RNA-based sensor shows no interference by Cu(2+), Fe(2+) Hg(2+) and Ag(+), which are known to interfere significantly with the solid-state CdS/Ag(2)S membrane electrode. The copper RNA-based sensor displays general potentiometric characteristics similar to those based on macrocyclic ionophores and organic ion exchangers and has the advantage of a better selectivity for Cu(2+) over some alkaline earth, divalent and transition metal ions. The iron RNA-based membrane sensor exhibits no interference by Hg(2+) and Zn(2+), which are known to interfere with other previously suggested sensors. The nature and composition of the RNA ionophore and its cadmium complex are examined using electrophoresis, Fourier-transform infrared analysis, elemental analysis and X-ray fluorescence techniques.  相似文献   

5.
2-((Naphthalen-6-yl)methylthio)ethanol (HL) was prepared by one pot synthesis using 2-mercaptoethanol and 2-bromomethylnaphthalene. It was found to be a highly selective fluorescent sensor for Al(3+) in the physiological pH (pH 7.0-8.0). It could sense Al(3+) bound to cells through fluorescence microscopy. Metal ions like Mn(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Ag(+), Cd(2+), Hg(2+), Cr(3+) and Pb(2+) did not interfere. No interference was also observed with anions like Cl(-), Br(-), F(-), SO(4)(2-), NO(3)(-), CO(3)(2-), HPO(4)(2-) and SCN(-). Experimentally observed structural and spectroscopic features of HL and its Al(3+) complex have been substantiated by computational calculations using density functional theory (DFT) and time dependent density functional theory (TDDFT).  相似文献   

6.
研究了硫酸铵-碘化钾-氯化十六烷基吡啶-水体系浮选分离镉的行为及其与常见离子分离的条件。结果表明,控制pH5.0,在1.0g(NH4)2SO4存在下,Cd^2 可被碘化钾-氯化十六烷基吡啶-水体系浮选,而Zn^2 、Mn^2 、Fe^2 、Co^2 、Ni^2 、A1^3 等离子在该体系中不被浮选,可实现Cd^2 与这些离子的定量分离。对合成水样进行了浮选分离测定,结果满意。  相似文献   

7.
Interaction of the lacunary [alpha-XW(9)O(33)](9-) (X = As(III), Sb(III)) with Fe(3+) ions in acidic, aqueous medium leads to the formation of dimeric polyoxoanions, [Fe(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](6-) (X = As(III), Sb(III)) in high yield. X-ray single-crystal analyses were carried out on Na(6)[Fe(4)(H(2)O)(10)(beta-AsW(9)O(33))(2)] x 32H(2)O, which crystallizes in the monoclinic system, space group C2/m, with a = 20.2493(18) A, b = 15.2678(13) A, c = 16.0689(14) A, beta = 95.766(2) degrees, and Z = 2; Na(6)[Fe(4)(H(2)O)(10)(beta-SbW(9)O(33))(2)] x 32H(2)O is isomorphous with a = 20.1542(18) A, b = 15.2204(13) A, c = 16.1469(14) A, and beta = 95.795(2) degrees. The selenium and tellurium analogues are also reported, [Fe(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](4-) (X = Se(IV), Te(IV)). They are synthesized from sodium tungstate and a source of the heteroatom as precursors. X-ray single-crystal analysis was carried out on Cs(4)[Fe(4)(H(2)O)(10)(beta-SeW(9)O(33))(2)] x 21H(2)O, which crystallizes in the triclinic system, space group P macro 1, with a = 12.6648(10) A, b = 12.8247(10) A, c = 16.1588(13) A, alpha = 75.6540(10) degrees, beta = 87.9550(10) degrees, gamma = 64.3610(10) gamma, and Z = 1. All title polyanions consist of two (beta-XW(9)O(33)) units joined by a central pair and a peripheral pair of Fe(3+) ions leading to a structure with idealized C(2h) symmetry. It was also possible to synthesize the Cr(III) derivatives [Cr(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](6-) (X = As(III), Sb(III)), the tungstoselenates(IV) [M(4)(H(2)O)(10)(beta-SeW(9)O(33))(2)]((16)(-)(4n)-) (M(n+) = Cr(3+), Mn(2+), Co(2+), Ni(2+), Zn(2+), Cd(2+), and Hg(2+)), and the tungstotellurates(IV) [M(4)(H(2)O)(10)(beta-TeW(9)O(33))(2)]((16-4n)-) (M(n+) = Cr(3+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Hg(2+)), as determined by FTIR. The electrochemical properties of the iron-containing species were also studied. Cyclic voltammetry and controlled potential coulometry aided in distinguishing between Fe(3+) and W(6+) waves. By variation of pH and scan rate, it was possible to observe the stepwise reduction of the Fe(3+) centers.  相似文献   

8.
[Reaction: see text]. The self-inclusion behavior and induced circular dichroism (ICD) characteristics of two beta-cyclodextrin (beta-CD) derivatives, in which a 1-methyl-4,4'-bipyridinium (viologen) group is connected by an octamethylene chain to either the primary (2(2+)) or secondary (3(2+)) side of beta-CD, and of their reduced forms, are investigated. 1H NMR studies showed that 2(2+) forms an intramolecular self-inclusion complex with K(in) = 3.1 +/- 0.4, whereas 3(2+) forms a head-to-head type of dimer with K(D) = 65 +/- 10 M(-1) at 25 degrees C. 2(2+) and 3(2+) form [2]pseudorotaxanes with alpha-CD, with the secondary side of the alpha-CD facing the viologen moiety. The ICD characteristics of mono-6-[4-(1-methyl-4-pyridinio)-1-pyridinio]-beta-CD (1(2+)), 2(2+), 3(2+), and methyloctyl viologen-beta-CD complexes were obtained for the oxidized and reduced states of the viologen units. The results indicated dimer formation for 1 degrees , and intramolecular complexation for 2*+ and 2 degrees in which the reduced viologen units are outside the beta-CD cavity. The results also indicated intramolecular complexation for 3*+ and 3 degrees, but with reduced viologen units inside the cavity. This work provides unequivocal evidence of the preference of the secondary side of cyclodextrins for viologen groups, regardless of their oxidation states, and the dependence of ICD of the viologen chromophores on their location with respect to the CD cavity.  相似文献   

9.
Singh RP 《Talanta》1972,19(11):1421-1427
A study has been made of a new masking procedure for highly selective complexometric determination of copper(II), based on decomposition of the copper-EDTA complex at pH 5-6. Among the various combinations of masking agents tried, ternary masking mixtures comprising a main complexing agent (thiourea), a reducing agent (ascorbic acid) and an auxiliary complexing agent (thiosemicarbazide or a small amount of 1,10-phenanthroline or 2,2'-dipyridyl) have been found most suitable. An excess of EDTA is added and the surplus EDTA is back-titrated with lead (or zinc) nitrate with Xylenol Orange as indicator (pH 5-6). A masking mixture is then added to decompose the copper-EDTA complex and the liberated EDTA is again back-titrated with lead (or zinc) nitrate. The following cations do not interfere: Ag(+), Hg(2+), Pb(2+), Ni(2+), Bi(3+), As(3+), Al(3+), Sb(3+), Sn(4+), Cd(2+), Co(2+), Cr(3+) and moderate amounts of Fe(3+) and Mn(2+). The notable feature is that consecutive determination of Hg(2+) and Cu(2+) can be conveniently carried out in the presence of other cations.  相似文献   

10.
p-Nitrocalix[6]arene (CALX-N6, L) formed a 1:1 metal complex, ML, with light rare earth metal ions (M3+), such as La3+, Pr3+ and Nd3+ except Ce3+, but formed a 1:2 (M(3+):L) complex, ML2 (the charge of the complex is omitted) with heavy rare earth metal ions, such as Sm(3+)-Lu3+ including Y3+. The conditional stability constants of these 1:1 and 1:2 complexes, KML and KML2, were measured by a ligand displacement method using absorption spectrophotometry in 4% (v/v) acetone aqueous solution at pH 9.65 +/- 0.15 and 25 degrees C.  相似文献   

11.
The complexations of cadmium ion with guanine bases were detected by electrospray ionization mass spectrometry (ESI-MS). In order to explore the toxicity of cadmium, such as oxidative stress to DNA and carcinogenesis, it is very important to determine the interactions between the cadmium ion and nucleotide. The analysis of mixed cadmium ion-guanosine aqueous solution (molar ratio 1 : 9) using ESI-MS (cone voltage 20 V) showed the presence of various cadmium complex ions, such as [n (guanosine) + Cd](2+) (n = 3-8), [2guanine + Cd](2+), [guanosine + guanine + Cd](2+) and [guanosine + 2guanine + Cd](2+). The observed [2guanine + Cd](2+), [guanosine + guanine + Cd](2+) and [guanosine + guanine + Cd](2+) ions are formed through the dissociation of the N-glycoside bond at the interface of ESI-MS. For deoxyguanosine and ethylguanine, similar cadmium complexes were observed. However, the complexes between the cadmium ion and 8-hydroxydeoxyguanosine were not detected. Furthermore, when a higher molar ratio (Cd : guanosine) or cone voltage were used, more of the monovalent ion peaks, such as [Cd(guanine - H)(2) + H](+) and [Cd(guanosine - H)(2) + H](+), were observed and a decrease in the abundance of the divalent ions, such as [n(guanosine)+Cd](2+), occurred.  相似文献   

12.
13.
The binding sites of Zn(2+), Cd(2+), and Hg(2+) in complexes with 2-(alpha-hydroxybenzyl)thiamine monophosphate chloride, (LH)(+)Cl(-), have been investigated in the solid state [2-(alpha-hydroxybenzyl)thiamin monophosphate chloride monoprotonated at the phosphate group and protonated at N(1)' is denoted as (LH)(+)Cl(-); therefore, the ligand monoprotonated at the phosphate group and deprotonated at N(1)' is L]. Complexes of formulae MLCl(2), M(LH)Cl(3), and (MCl(4))(2)(-)(LH)(2)(+) (M = Zn(2+), Cd(2+), and Hg(2+)) were isolated in aqueous and methanolic solutions, depending on pH. The crystal structure of the complex of formula HgL(2)Cl(2) was solved, together with that of the free ligand (LH)(+)Cl(-), by X-ray crystallography. HgL(2)Cl(2) crystallizes in C2/c, with a = 32.968(6) ?, b = 7.477(2) ?, c = 21.471(4) ?, beta = 118.19(1) degrees, V = 4665(2) ?(3), and Z = 4. (LH)(+)Cl(-) crystallizes in Cc, with a = 10.951(3) ?, b = 17.579(4) ?, c = 13.373(3) ?, beta = 105.36(2) degrees, V = 2482.4(10) ?(3), and Z = 4. Mercury(II) binds to the N(1') of the pyrimidine ring. Both ligands are in the S conformation [Phi(T) = -98.1(9) degrees and Phi(P) = 176.1(10) degrees for HgL(2)Cl(2) and Phi(T) = 104.1(5) degrees and Phi(P) = 171.9(6) degrees for (LH)(+)Cl(-)]. (31)P and (13)C NMR spectra, together with vibrational spectra (IR/Raman), are used to deduce the binding sites of the metal and the protonation states of the ligand at various pH values. It is found that solid-state (31)P NMR spectroscopy is particularly useful in characterizing these complexes as the (31)P shielding tensors are sensitive to the state of the phosphate group. On the other hand, the (31)P NMR spectra indicate that direct bonding between Zn(2+) and Cd(2+) to the phosphate can occur under certain preparation conditions. Solid-state (13)C NMR and vibrational (IR/Raman) spectroscopic results are also in agreement with the other techniques.  相似文献   

14.
Under experimental conditions in which the self-association of the adenine phosphates (AP), that is, of adenosine 5'-monophosphate (AMP(2-)) and adenosine 5'-diphosphate (ADP(3-)), is negligible, potentiometric pH titrations were carried out to determine the stabilities of the M(H;AP) and M(AP) complexes where M(2+)=Mg(2+), Ca(2+), Sr(2+), Ba(2+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), or Cd(2+) (25 degrees C; I=0.1 M, NaNO(3)). It is concluded that in the M(H;AMP)(+) species M(2+) is bound at the adenine moiety and in the M(H;ADP) complexes at the diphosphate unit; however, the proton resides in both types of monoprotonated complexes at the phosphate residue. The stabilities of nearly all the M(AMP) and M(ADP)(-) complexes are significantly larger than what is expected for a sole coordination of M(2+) to the phosphate residue. This increased complex stability is attributed, in agreement with previous (1)H NMR shift studies and further information existing in the literature, to the formation of macrochelates of the phosphate-coordinated metal ions with N7 of the adenine residues. On the basis of recent measurements with simple phosphate monoesters and phosphonate ligands (R-MP(2-)) as well as with diphosphate monoesters (R-DP(3-)), where R is a noncoordinating and noninhibiting residue, the increased stabilities of the M(AMP) and M(ADP)(-) complexes due to the M(2+)-N7 interaction could be evaluated and the extent of macrochelate formation calculated. The results show that the formation degrees of the macrochelates for the complexes of the alkaline earth ions are small (about 15 % at the most), whereas for the 3d metal ions as well as for Zn(2+) and Cd(2+) the formation degrees vary between about 15 % (Mn(2+)) and 75 % (Ni(2+)) with values of about 40 and 50 % for Zn(2+) and Cu(2+), respectively. It is interesting to note, taking earlier results for M(ATP)(2-) complexes also into account (ATP(4-)=adenosine 5'-triphosphate), that for a given metal ion in nearly all instances the formation degrees of the macrochelates are within the error limits the same for M(AMP), M(ADP)(-) and M(ATP)(2-) complexes; except for Co(2+) and Ni(2+) it holds M(AMP) > M(ADP)(-) approximately M(ATP)(2-). This result is astonishing if one considers that the absolute stability constants of these complexes, which are determined largely by the affinity of the phosphate residues, can differ by more than two orders of magnitude. The impact and conclusions of these observations for biological systems are shortly lined out.  相似文献   

15.
The catalytic activity for the decomposition of hydrogen peroxide by anion-exchangers modified with metal complexes of thiacalix[4]arenetetrasulfonate (Me(n+)-TCAS[4], Me(n+)=Mn(3+), Mn(2+), Fe(3+), Co(3+), Co(2+), Cu(2+), Zn(2+) and Ni(2+)) was investigated. As a reference, calix[4]arenetetrasulfonate, calix[6]arenehexasulfonate and calix[8]areneoctasulfonate were also examined. Mn(3+)- and Fe(3+)-TCAS[4] on the modified anion-exchangers showed high catalytic activity in alkaline buffer solutions among metal complexes tested. Mn(3+)- and Fe(3+)-TCAS[4] on the modified anion-exchangers exhibited high and constant levels of catalytic activity even after having been used 5 times, and showed catalytic activity in the presence of an excess of H(2)O(2) over Mn(3+)- and Fe(3+)-TCAS[4] on the modified anion-exchangers. Only Mn(3+)-TCAS[4] on the modified anion-exchangers exhibited high catalytic activity at around a neutral pH.  相似文献   

16.
The reaction of [M(CN)(6)](3-) (M = Cr(3+), Mn(3+), Fe(3+), Co(3+)) and [M(CN)(8)](4-/3-) (M = Mo(4+/5+), W(4+/5+)) with the trinuclear copper(II) complex of 1,3,5-triazine-2,4,6-triyltris[3-(1,3,5,8,12-pentaazacyclotetradecane)] ([Cu(3)(L)](6+)) leads to partially encapsulated cyanometalates. With hexacyanometalate(III) complexes, [Cu(3)(L)](6+) forms the isostructural host-guest complexes [[[Cu(3)(L)(OH(2))(2)][M(CN)(6)](2)][M(CN)(6)]][M(CN)(6)]30 H(2)O with one bridging, two partially encapsulated, and one isolated [M(CN)(6)](3-) unit. The octacyanometalates of Mo(4+/5+) and W(4+/5+) are encapsulated by two tris-macrocyclic host units. Due to the stability of the +IV oxidation state of Mo and W, only assemblies with [M(CN)(8)](4-) were obtained. The Mo(4+) and W(4+) complexes were crystallized in two different structural forms: [[Cu(3)(L)(OH(2))](2)[Mo(CN)(8)]](NO(3))(8)15 H(2)O with a structural motif that involves isolated spherical [[Cu(3)(L)(OH(2))](2)[M(CN)(8)]](8+) ions and a "string-of-pearls" type of structure [[[Cu(3)(L)](2)[M(CN)(8)]][M(CN)(8)]](NO(3))(4) 20 H(2)O, with [M(CN)(8)](4-) ions that bridge the encapsulated octacyanometalates in a two-dimensional network. The magnetic exchange coupling between the various paramagnetic centers is characterized by temperature-dependent magnetic susceptibility and field-dependent magnetization data. Exchange between the CuCu pairs in the [Cu(3)(L)](6+) "ligand" is weakly antiferromagnetic. Ferromagnetic interactions are observed in the cyanometalate assemblies with Cr(3+), exchange coupling of Mn(3+) and Fe(3+) is very small, and the octacoordinate Mo(4+) and W(4+) systems have a closed-shell ground state.  相似文献   

17.
The tripodal amino-phosphinate ligands, tris(4-(phenylphosphinato)-3-benzyl-3-azabutyl)amine (H(3)ppba.2HCl.H(2)O) and tris(4-(phenylphosphinato)-3-azabutyl)amine (H(3)ppa.HCl.H(2)O) were synthesized and reacted with Al(3+), Ga(3+), In(3+) and the lanthanides (Ln(3+)). At 2 : 1 H(3)ppba to metal ratios, complexes of the type [M(H(3)ppba)(2)](3+)(M = Al(3+), Ga(3+), In(3+), Ho(3+)-Lu(3+)) were isolated. The bicapped [Ga(H(3)ppba)(2)](NO(3))(2)Cl.3CH(3)OH was structurally characterized and was shown indirectly by various techniques to be isostructural with the other [M(H(3)ppba)(2)](3+) complexes. Also, at 2 : 1 H(3)ppba to metal ratios, complexes of the type [M(H(4)ppba)(2)](5+)(M = La(3+)-Tb(3+)) were characterized, and the X-ray structure of [Gd(H(4)ppba)(2)](NO(3))(4)Cl.3CH(3)OH was determined. At 1 : 1 H(3)ppba to metal ratios, complexes of the type [M(H(4)ppba)](4+)(M = La(3+)-Er(3+)) were isolated and characterized. Elemental analysis and spectroscopic evidence supported the formation of a 1 : 1 monocapped complex. Reaction of 1 : 1 ratios of H(3)ppa with Ln(3+) and In(3+) yielded complexes of the type [M(H(3)ppa)](3+)(M = La(3+)-Yb(3+)) but with Ga(3+), complex of the type [Ga(ppa)].3H(2)O was obtained. Reaction of 1 : 1 ratios of H(3)ppa with Ln(3+) and In(3+) yielded complexes of the type [M(H(3)ppa)](3+)(M = La(3+)-Yb(3+)) but with Ga(3+) a neutral complex [Ga(ppa)].3H(2)O was obtained. The formation of an encapsulated 1 : 1 complex is supported by elemental analysis and spectroscopic evidence.  相似文献   

18.
An efficient water soluble fluorescent Al(3+) receptor, 1-[[(2-furanylmethyl)imino]methyl]-2-naphthol (1-H) was synthesized and characterized by physico-chemical and spectroscopic tools along with single crystal X-ray crystallography. High selectivity and affinity of 1-H towards Al(3+) in HEPES buffer (DMSO/water: 1/100) of pH 7.4 at 25 °C showed it to be suitable for detection of intracellular Al(3+) by fluorescence microscopy. Metal ions, viz. alkali (Na(+), K(+)), alkaline earth (Mg(2+), Ca(2+)), and transition-metal ions (Ni(2+), Zn(2+), Cd(2+), Co(2+), Cu(2+), Fe(3+), Cr(3+/6+), Hg(2+)) and Pb(2+), Ag(+) did not interfere. The lowest detection limit for Al(3+) was calculated to be 6.03 × 10(-7) M in 100 mM HEPES buffer (DMSO/water: 1/100). Theoretical calculations have also been included in support of the configuration of the probe-aluminium complex.  相似文献   

19.
5- and 6-Uracilmethylphosphonate (5Umpa(2-) and 6Umpa(2-)) as acyclic nucleotide analogues are in the focus of anticancer and antiviral research. Connected metabolic reactions involve metal ions; therefore, we determined the stability constants of M(Umpa) complexes (M(2+)=Mg(2+), Ca(2+), Mn(2+), Co(2+), Cu(2+), Zn(2+), or Cd(2+)). However, the coordination chemistry of these Umpa species is also of interest in its own right, for example, the phosphonate-coordinated M(2+) interacts with (C4)O to form seven-membered chelates with 5Umpa(2-), thus leading to intramolecular equilibria between open (op) and closed (cl) isomers. No such interaction occurs with 6Umpa(2-). In both M(Umpa) series deprotonation of the uracil residue leads to the formation of M(Umpa-H)(-) complexes at higher pH values. Their stability was evaluated by taking into account the fact that the uracilate residue can bind metal ions to give M(2)(Umpa-H)(+) species. This has led to two further important insights: 1) In M(6Umpa-H)-cl the H(+) is released from (N1)H, giving rise to six-membered chelates (degrees of formation of ca. 90 to 99.9 % with Mn(2+), Co(2+), Cu(2+), Zn(2+), or Cd(2+)). 2) In M(5Umpa-H)$-cl the (N3)H is deprotonated, leading to a higher stability of the seven-membered chelates involving (C4)O (even Mg(2+) and Ca(2+) chelates are formed up to approximately 50 %). In both instances the M(Umpa-H)-op species led to the formation of M(2)(Umpa-H)(+) complexes that have one M(2+) at the phosphonate and one at the (N3)(-) (plus carbonyl) site; this proves that nucleotides can bind metal ions independently at the phosphate and the nucleobase residues. X-ray structural analyses of 6Umpa derivatives show that in diesters the phosphonate group is turned away from the uracil residue, whereas in H(2)(6Umpa) the orientation is such that upon deprotonation in aqueous solution a strong hydrogen bond is formed between (N1)H and PO(3) (2-); replacement of the hydro gen with M(2+) gives the M(6Umpa-H)-cl chelates mentioned.  相似文献   

20.
The kinetics of the rapid reaction between Cr(aq)OO(2+) and NO were determined by laser flash photolysis of Cr(aq)NO(2+) in O(2)-saturated acidic aqueous solutions, k = 7 x 10(8) M(-1) s(-1) at 25 degrees C. The reaction produces an intermediate, believed to be NO(2), which was scavenged with ([14]aneN(4))Ni(2+). With limiting NO, the Cr(aq)OO(2+)/NO reaction has a 1:1 stoichiometry and produces both free NO(3)(-) and a chromium nitrato complex, Cr(aq)ONO(2)(2+). In the presence of excess NO, the stoichiometry changes to [NO]/[Cr(aq)OO(2+)] = 3:1, and the reaction produces close to 3 mol of nitrite/mol of Cr(aq)OO(2+). An intermediate, identified as a nitritochromium(III) ion, Cr(aq)ONO(2+), is a precursor to a portion of free NO(2)(-). In the proposed mechanism, the initially produced peroxynitrito complex, Cr(aq)OONO(2+), undergoes O-O bond homolysis followed by some known and some novel chemistry of Cr(aq)O(2+) and NO(2). The reaction between Cr(aq)O(2+) and NO generates Cr(aq)ONO(2+), k > 10(4) M(-1) s(-1). Cr(aq)OO(2+) reacts with NO(2) with k = 2.3 x 10(8) M(-1) s(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号