首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromiumexistsindifferentoxidationstatesingroundwater,industrialwastewater,seawater,andsoilofourenvironment1,2.Chromium(III)isanessentialtraceelementforhumans,requiredforthemaintenanceofnormalglucose,cholesterol,andfattyacidmetabolism.Ontheotherhand,watersolublechromium(VI),intheformCr2O72-orCrO42-,ishighlyirritatingandtoxictohumansandanimals3.Itsacutetoxiceffectsincludeanimmediatecardiovascularshockandlatereffectsonkidney,liver,andblood-formingorgans.Therefore,itisnecessaryforriskassessme…  相似文献   

2.
A study of the extraction of chromium(VI) from aqueous media by ketones was made. Extraction of chromium was found to be most efficient from aqueous hydrochloric acid solutions. A mechanism for the extraction of chromium(VI) from aqueous hydrochloric acid solutions by methyl isobutyl ketone is proposed involving the formation of a receptor in the organic phase, the exchange of the chloride ion of the receptor for the anionic chromium(VI) species of the aqueous phase, and the solvation of the extracted chromium species. The differences in the abilities of various ketones to extract chromium(VI) from aqueous hydrochloric acid solutions, and the differences in the extraction of chromium (VI) from various aqueous acids by methyl isobutyl ketone are attributed to the differences in the formation of receptors.  相似文献   

3.
The extraction of chromium(VI) from aqueous hydrochloric, nitric and sulfuric acid solutions by diphenyl-2-pyridylmethane(DPPM) dissolved in chloroform has been studied. Chromium(VI) is quantitatively extracted from hydrochloric acid solutions in the range 0.1–1M. With increasing acid concentration, the extraction of chromium diminishes and in concentrated acid solutions practically all the chromium remains in the aqueous phase. The quantitative back-extraction of chromium from the organic phase is possible with HCl or HNO3 at concentrations higher than 5M through the use of reducing agents. The composition of the extracted chromium(VI) species was studied in solution. The complexes (DPPMH)+HCrO 4 and (DPPMH)2Cr2O 7 are extracted for tracer and macro amounts of chromium(VI) respectively. The data have been utilized for the separation of chromium(VI) from base metal ions.  相似文献   

4.
A method for the simultaneous determination of chromium(III) and chromium(VI) by capillary electrophoresis (CE) has been developed. The chromium(III) has been chelated with 1,2-cyclohexanediaminetetraacetic acid (CDTA) in order to impart a negative charge and similar mobility to both the chromium(III) and the chromium(VI) species. The effects of the amount of the reagent, pH and heating time required to complete the complexation have been studied. Factors affecting the CE behaviour such as the polarity of electrodes and the pH of electrophoretic buffer have been investigated. The separated species have been monitored by direct UV measurements at 214 nm. The detection limits achieved are 10 microg/l for Cr(VI) and 5 microg/l for Cr(III) and linear detector response is observed up to 100 mg/l. The procedure has been applied to the determination of both chromium species in industrial electroplating samples and its accuracy was checked by comparing the results (as total chromium) with those of atomic absorption spectrometry. No interference occurred from transition metal impurities under optimized separation conditions. The method is also shown to be feasible for determining Cr(III) as well as other metal ions capable to form complexes with CDTA (like iron(III), copper(II), zinc(II) and manganese(II)) in pharmaceutical preparations of essential trace elements.  相似文献   

5.
Girard L  Hubert J 《Talanta》1996,43(11):1965-1974
We have studied the speciation of chromium (VI) in stainless-steel welding dusts. The approach used for the analysis of Cr(VI) and total Cr relies on a flow-injection analyzer (FIA) equipped with two different sequential detectors. The system measures Cr(VI). by colorimetry (with 1,5-diphenyl carbohydrazide) and total chromium content by flame atomic absorption spectroscopy (AAS). The extraction of the samples of welding-fume dusts is achieved in a buffer solution (acetic acid and sodium acetate at pH 4). This extraction procedure gives a 96% recovery of chromium (VI). The FIA-AAS system that has been described is also more sensitive, has a lower detection limit (0.005 mug ml(-1)) and gives a better precision (< 1%) than other equivalent systems that have been previously described.  相似文献   

6.
 A method is described for the quantitative preconcentration and separation of trace chromium in water by adsorption on melamine-urea-formaldehyde resin. Cr(VI) is enriched from aqueous solutions on the resin. After elution the Cr(VI) is determined by FAAS. The capacity of the resin is maximal at ∼ pH 2. Total chromium can be determined by the method after oxidation of Cr(III) to Cr(VI) by hydrogen peroxide. The relative standard deviations (10 replicate analyses) for 10 mg/L levels of Cr(VI), Cr(III) and total chromium were 1.5, 3.5 and 2.8% respectively. The procedure has been applied to the determination and speciation of chromium in lake water, tap water and chromium-plating baths.  相似文献   

7.
Zusammenfassung Eine Methode zur katalytischen Chrombestimmung wurde vorgeschlagen, die auf der Extraktion von Cr(VI) mit Methyl-iso-butyl-keton (MIBK) aus salzsaurer Lösung und direktem Einsatz des Extraktes in die Indikatorreaktion zwischen o-Dianisidin und Wasserstoffperoxid beruht. Die Geschwindigkeit der unkatalysierten Reaktion wird durch MIBK bis 5 Vol.% nicht erhöht. Da nur Cr(VI) extrahiert wird, können Cr(VI)-Spuren in Chrom(III)-Salzen bestimmt werden.Die vorgeschlagene Methode ermöglicht auch die Bestimmung von Chrom nach einem thermischen Aufschluß in menschlichem Vollblut. Die Nachweisgrenze liegt bei 30 ng Cr/ml Blut, wobei die rel. Standardabweichung etwa 12% beträgt. Die Richtigkeit der Ergebnisse wurde mittels flammenloser AAS überprüft.
Extractive catalymetric determination of chromium
Summary A method for the determination of chromium(VI) is proposed based on its catalytic effect on the indicator reaction between o-dianisidine and hydrogen peroxide. Chromium(VI) is extracted firstly with methyl isobutyl ketone from hydrochloric acid and the extract added directly to the reaction system. Up to five vol.% of MIBK in the reaction mixture does not increase the rate of the uncatalyzed reaction. The main advantage is the increase in selectivity. The extraction of chromium (VI) only enables it to be determined in chromium(III)-salts.The method allows also the determination of chromium in human blood after mineralization of the sample. The detection limit is 30 ng Cr/ml blood, the coefficient of variation is about 12%. The accuracy of the results was confirmed by flameless AAS.


Vorgetragen beim 8. Internationalen Mikrochemischen Symposium, Graz; 25.–30. August 1980.  相似文献   

8.
The complexation of chromium by different flavonoid dyes in micellar media has been studied, in particular the reaction between chromium and quercetin. Micellar effects, the reaction pathway proposed and the application of the method to the determination of Cr(VI) and Cr(VI) + Cr(III) mixtures are discussed.  相似文献   

9.
A method for the simultaneous determination of chromium(III) and chromium(VI) by capillary electrophoresis (CE) has been developed. The chromium(III) has been chelated with 1,2-cyclohexanediaminetetraacetic acid (CDTA) in order to impart a negative charge and similar mobility to both the chromium(III) and the chromium(VI) species. The effects of the amount of the reagent, pH and heating time required to complete the complexation have been studied. Factors affecting the CE behaviour such as the polarity of electrodes and the pH of electrophoretic buffer have been investigated. The separated species have been monitored by direct UV measurements at 214 nm. The detection limits achieved are 10 g/l for Cr(VI) and 5 g/l for Cr(III) and linear detector response is observed up to 100 mg/l. The procedure has been applied to the determination of both chromium species in industrial electroplating samples and its accuracy was checked by comparing the results (as total chromium) with those of atomic absorption spectrometry. No interference occurred from transition metal impurities under optimized separation conditions. The method is also shown to be feasible for determining Cr(III) as well as other metal ions capable to form complexes with CDTA (like iron(III), copper(II), zinc(II) and manganese(II)) in pharmaceutical preparations of essential trace elements.  相似文献   

10.
Effects of hydrochloric acid and sodium hydroxide treatments of activated carbons (ACs) on chromium(VI) reduction were studied. The surface properties were determined by pH, acid-base values, FT-IR, and X-ray photoelectron spectrometer (XPS). And the porous structure of the activated carbons was characterized by adsorption of N(2)/77 K. The Cr(VI) adsorption experiments were carried out to analyze the influence of porous texture and surface properties changed by the chemical surface treatments of ACs on adsorption rate with carbon-solution contact time. From the experimental results, it was observed that the extent of adsorption and reduction processes depends on both microporous structure and functional groups. And the adsorption of Cr(VI) ion was more effective in the case of acidic treatment on activated carbons, resulting from the increases of acid value (or acidic functional group) of activated carbon surfaces. However, basic treatment on activated carbons was not significantly effective on the adsorption of Cr(VI) ion, probably due to the effects of the decrease of specific surface area and basic Cr(VI) in nature.  相似文献   

11.
A method for speciation of Cr(III) and Cr(VI) in real samples has been developed. Cr(VI) has been separated from Cr(III) and preconcentrated as its pyrrolidinedithiocarbamate (APDC) complex by using a column containing Amberlite XAD–2000 resin and determined by FAAS. Total chromium has also been determined by FAAS after conversion of Cr(III) to Cr(VI) by oxidation with KMnO4. Cr(III) has been calculated by subtracting Cr(VI) from the total. The effect of pH, flow‐rate, adsorption and batch capacity and effect of various metal cations and salt anions on the sorption onto the resin were investigated. The adsorption is quantitative in the pH range of 1.5–2.5, and Cr(VI) ion was desorbed by using H2SO4 in acetone. The recovery of Cr(VI) was 97 ± 4 at a 95% confidence level. The highest preconcentration factor was 80 for a 200 mL sample volume. The adsorption and batch capacity of sorbent were 7.4 and 8.0 mg g?1 Cr(VI), respectively, and loading half time was 5.0 min. The detection limit of Cr(VI) is 0.6 μg/L. The procedure has been applied to the determination and speciation of chromium in stream water, tap water, mineral spring water and spring water. Also, the proposed method was applied to total chromium preconcentration in microwave digested moss and rock samples with satisfactory results. The developed method was validated with CRM‐TMDW‐500 (Certified Reference Material Trace Metals in Drinking Water) and BCR‐CRM 144R s (Certified Reference Material Sewage Sludge, Domestic Origin) and the results obtained were in good agreement with the certified values. The relative standard deviations were below 6%.  相似文献   

12.
Methods for the on-line chromatographic preconcentration of Cr(III) and Cr(VI) have been developed. Cr(VI) has been preconcentrated on an RP C18 silica based column with tetrabutylammonium-bromide (TBABr) as ion-pairing agent. Specially for Cr(III) a new and effective preconcentration technique based on the sorption of Cr(III)-ions in a C18 column in presence of KH-phthalate has been developed. The efficiency of sample introduction into the atomic emission spectrometer could be improved by hydraulic high pressure nebulization. For the detection of chromium the acetylene/N(2)O flame has been used as a powerful emission spectrometric source. Applying these steps the detection limit (3sigma) could be improved to 25 pg/mL for Cr(III) and to 20 pg/mL for Cr(VI). The method has been applied for the chromium speciation in natural water samples.  相似文献   

13.
A new solid phase extraction (SPE) method has been developed for the speciation of Cr(III) and Cr(VI). This method is based on the adsorption of Cr(VI) on modified alumina‐coated magnetite nanoparticles (ACMNPs). Total chromium in different samples was determined as Cr(VI) after oxidation of Cr(III) to Cr(VI) using H2O2. The chromium concentration has been determined by flame atomic absorption spectrometric (FAAS) technique and amount of Cr(III) was calculated by substracting the concentration of Cr(VI) from total chromium concentration. The effect of parameters such as pH, amount of adsorbent, contact time, sample volume, eluent type, H2O2 concentration and cetyltrimethylammonium bromide (CTAB) concentration as modifier on the quantitative recovery of Cr(VI) were investigated. Under the optimal experimental conditions, the preconcentration factor, detection limit, linear range and relative standard deviation (RSD) of Cr(VI) were 140 (for 350 mL of sample solution), 0.083 ng mL?1, 0.1‐10.0 ng mL?1 and 4.6% (for 5.0 ng mL?1, n = 7), respectively. This method avoided the time‐consuming column‐passing process of loading large volume samples in traditional SPE through the rapid isolation of CTAB@ACMNPs with an adscititious magnet. The proposed method was successfully applied to the determination and speciation of chromium in different water and wastewater samples and suitable recoveries were obtained.  相似文献   

14.
Tunçeli A  Türker AR 《Talanta》2002,57(6):1199-1204
A simple and sensitive method for the speciation, separation and preconcentration of Cr(VI) and Cr(III) in tap water was developed. Cr(VI) has been separated from Cr(III) and preconcentrated as its 1,5-diphenylcarbazone complex by using a column containing Amberlite XAD-16 resin and determined by FAAS. Total chromium has also been determined by FAAS after conversion of Cr(III) to Cr(VI) by oxidation with KMnO4. Then, Cr(III) has been calculated by subtracting Cr(VI) from the total. The effect of acidity, amount of adsorbent, eluent type and flow rate of the sample solution on to the preconcentration procedure has been investigated. The retained Cr(VI) complex was eluated with 10 ml of 0.05 mol l−1 H2SO4 solution in methanol. The recovery of Cr(VI) was 99.7±0.7 at 95% confidence level. The highest preconcentration factor was 25 for a 250 ml sample volume. The detection limit of Cr(VI) was found as 45 μg l−1. The adsorption capacity of the resin was found as 0.4 mg g−1 for Cr (VI). The effect of interfering ions has also been studied. The proposed method was applied to tap water samples and chromium species have been determined with the relative error <3%.  相似文献   

15.
Summary A method for the determination of chromium(VI) in solid materials with a Cr(VI) content at ppm level in the presence of ca. 10% Cr(III) has been devised. Chromium(VI) is extracted with 0.1M NaOH in a double-water bath (97° C) for 90 min. Differential-pulse polarography in 1M NaOH and spectrophotometry with 1,5-diphenylcarbazide have been tested for use in the final determination of Cr(VI). After extraction in the form of dithiocarbamate into methylisobutylketone or ethylacetate, chromium was determined by flame AAS and DPP in an organic extract.  相似文献   

16.
A speciation procedure has been established for the flame atomic absorption spectrometric determination of Cr(III) and Cr(VI) based on coprecipitation of Cr(III) by using praseodymium(III) hydroxide (Pr(OH)3) precipitate. In the presented system, Cr(III) was quantitatively (>95%) recovered at the pH range of 10.0?C12.0 on Pr(III) hydroxide, while the recoveries of Cr(VI) were below 10%. The method was applied to the determination of the total chromium after reduction of Cr(VI) to Cr(III) by using hydroxylamine hydrochloride. The concentration of Cr(VI) is calculated by difference of total chromium and Cr(III) levels. The analytical parameters including pH of the aqueous medium, amount of Pr(III), centrifugation speed, sample volume were optimized. The influences of matrix ions were also investigated. The method was validated by the analysis of TMDA 70 fortified lake water certified reference material. The method was applied to the speciation of chromium in water samples.  相似文献   

17.
《Electroanalysis》2017,29(5):1222-1231
A microbial sensor, namely carbon paste electrode (CPE) modified with Citrobacter freundii (Cf–CPE) has been developed for the detection of hexavalent (Cr(VI)) and trivalent (Cr(III)) chromium present in aqueous samples using voltammetry, an electroanalytical technique. The biosensor developed, demonstrated about a twofold higher performance as compared to the bare CPE for the chosen ions. Using cyclic voltammetry and by employing the fabricated Cf–CPE, the lowest limit of detection (LLOD) of 1x10−4 M and 5x10−4 M for Cr(VI) and Cr(III) ions respectively could be achieved. By adopting the Differential Pulse Cathodic Stripping Voltammetric technique, the LLOD could be further improved to 1x10−9 M and 1x10−7 M for Cr(VI) and Cr(III) ions respectively using the biomodified electrodes. The reactions occurring at the electrode surface‐chromium solution interface and the mechanisms of biosorption of chromium species onto the biosensor are discussed. The stability and utility of the developed biosensor for the analysis of Cr(VI) and Cr(III) ions in chromite mine water samples has been evaluated.  相似文献   

18.
Nanometer titanium dioxide immobilized on silica gel (immobilized nanometer-scale TiO2 particles) was prepared by a sol-gel method and characterized by X-ray diffraction and scanning electron microscopy. The adsorptive behavior of Cr(III) and Cr(VI) on immobilized nanometer TiO2 was assessed. Cr(III) was selectively sorbed on immobilized nanometer TiO2 in the pH range of 7-9, while Cr(VI) was found to remain in solution. A sensitive and selective method has been developed for the speciation of chromium in water samples using an immobilized nanometer TiO2 microcolumn and inductively coupled plasma atomic emission spectrometry. Under optimized conditions (pH 7.0, flow rate 2.0 mL/min), Cr(III) was retained on the column, then eluted with 0.5 mol/L HNO3 and determined by ICP-AES. Total chromium was determined after the reduction of Cr(VI) to Cr(III) by ascorbic acid. The adsorption capacity of immobilized nanometer TiO2 for Cr(III) was found to be 7.04 mg/g. The detection limit for Cr(III) was 0.22 ng/mL and the RSD was 3.5% (n = 11, c = 100 ng/ mL) with an enrichment factor of 50. The proposed method has been applied to the speciation of chromium in water samples with satisfactory results.  相似文献   

19.
Kiba T  Terada K  Kiba T  Suzuki K 《Talanta》1972,19(4):451-464
Ruthenium in various chemical forms can be evolved as the tetroxide from insoluble matrix materials by heating the sample with chromium(VI)-condensed phosphoric acid reagent (abbreviated as Cr(VI)-CPA). Because of its excellent decomposing power for various solid samples, condensed phosphoric acid is very useful in the chemical analysis of various insoluble materials, and when an oxidizing agent such as potassium dichromate is added in the CPA medium, drastic oxidation proceeds on heating. This method is now extended to the separation of ruthenium from marine sediments. During the reaction with Cr(VI)-CPA ruthenium tetroxide is evolved and collected in an absorbent solution of 6M hydrochloric acid and ethanol (1:1), and the ruthenium is then determined spectrophotometrically with thiourea or radiometrically by counting the beta or gamma-activity. Osmium, which can be evolved as the tetroxide by the same treatment, can be eliminated beforehand by heating the sample with Ce(IV)-CPA, which removes osmium but not ruthenium. The successive distillations by means of Ce(IV)-CPA and Cr(VI)-CPA give satisfactory results for the separation between osmium and ruthenium. This method might be useful for the separation of ruthenium in geochemical or neutron-activation analysis.  相似文献   

20.
The development of an analytical technique is described which may be used to determine chromium, chromium(III) and chromium(VI) in estuarine and coastal waters. The method is based on selective micro-solvent extraction with subsequent GFAAS. The technique has been applied in a major North Sea estuary. The results obtained confirm that thermodynamic factors alone cannot be relied upon to describe the form of chromium in estuaries. Kinetic factors appear to have a strong influence over speciation and lead to the persistence of Cr(III) species in environments where Cr(VI) would be expected to be present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号