首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vanadium(III) obtained by dithionite reduction of vanadium(V) can be extracted as its ferron complex with tribenzylamine in chloroform from 0.05 M sulphuric acid. Vanadium (0–5 μg ml-1) is determined spectrophotometrically at 430 nm with a sensitivity of 0.0028 μg V cm-2. Al(III), Co(II), Ni(II), Fe(II, III), Hg(II), Si(IV), Be(II), Mg(II), Ca(II), Sr(II), Ba(II), Cr(VI, III), W(VI), Zn(II), U(VI), Mn(II). Pb(II), Cu(II), Cd(II) and Th(IV) do not interfere; only Mo(VI), Ti(IV), Zr(IV). Bi(V) and Sn(II) interfere. A single determination takes only 7 min. The extracted complex is VIII (R-3H.TBA)3 where R = C9H4O4NSI. The method is satisfactory for the determination of vanadium in steels, alum and other samples without preliminary separations.  相似文献   

2.
A sensitive and simultaneous spectrophotometric flow injection method for the determination of vanadium(IV) and vanadium(V) is proposed. The method is based on the effect of ligands such as 2,4,6-tris(2-pyridyl)-1,3,5-triazine (TPTZ) and diphosphate on the conditional redox potential of iron(III)/iron(II) system. A four-channel flow system is assembled. In this flow system, diluted hydrochloric acid (1.0 x 10(-2) mol dm(-3)) as a carrier for standard/sample, acetate buffer (pH 5.5) as a carrier for diphosphate solution, an equimolar mixed solution of iron(III) and iron(II) and a TPTZ solution are delivered, so that the baseline absorbance can be established by forming a constant amount of iron(II)-TPTZ complex (lambda(max) = 593 nm). Vanadium(IV) and/or vanadium(V) (400 microL) and diphosphate (200 microL) solutions are simultaneously introduced into the flow system; in this system the diphosphate solution passes through a delay coil. The potential of the iron(III)/iron(II) system increases in the presence of TPTZ, and therefore vanadium(IV) is easily oxidized by iron(III) to vanadium(V) to produce an iron(II)-TPTZ complex (a positive peak for vanadium(IV) appears). On the other hand, the potential of the redox system decreases in the presence of diphosphate, so that vanadium(V) can be easily reduced by iron(II) to vanadium(IV). In this case, the amount of iron(II) decreases according to the amount of vanadium(V). As a result, the produced iron(II)-TPTZ complex decreases (a negative peak for vanadium(V) appears). In this manner, two peaks for vanadium(IV) and vanadium(V) can be alternately obtained. The limits of detection (S/N = 3) are 1.98 x 10(-7) and 2.97 x 10(-7) mol dm(-3) for vanadium(IV) and vanadium(V), respectively. The method is applied to the simultaneous determination of vanadium(IV) and vanadium(V) in commercial bottled mineral water samples.  相似文献   

3.
Rao GG  Rao PK 《Talanta》1966,13(9):1335-1340
Vanadium(III) can be titrated at room temperature with potassium dichromate in an 8-12M phosphoric acid medium. Two potential breaks are observed in 12M phosphoric add with 0.2N potassium dichromate, the first corresponding to the oxidation of vanadium(III) to vanadium(IV) and the second to the oxidation of vanadium(IV) to vanadium(V). In titrations with 0.05N dichromate only the first break in potential is clearly observed. The method has been extended to the titration of mixtures of vanadium(III) and vanadium(IV). Conditions have also been found for the visual titration of vanadium(III) using ferroln or barium diphenylamine sulphonate as indicator.  相似文献   

4.
Simple, high-yield, large-scale syntheses of the V(III) complexes tris(maltolato)vanadium(III), V(ma)3, tris(ethylmaltolato)vanadium(III), V(ema)3, tris(kojato)vanadium(III) monohydrate, V(koj)3-H2O, and tris(1,2-dimethyl-3-hydroxy-4-pyridinonato)vanadium(III) dodecahydrate, V(dpp)3-12H2O, are described; the characterization of these complexes by various methods and, in the case of V(dpp)3-12H2O, by an X-ray crystal structure determination, is reported. The ability of these complexes to normalize glucose levels in the STZ-diabetic rat model has been examined and compared with that of the benchmark compound BMOV (bis(maltolato)oxovanadium(IV)), an established insulin-enhancing agent.  相似文献   

5.
The arylation of [VCl3(thf)3] with LiR(Cl), where R(Cl) is a polychlorinated phenyl group [C6Cl5, 2,4,6-trichlorophenyl(tcp), or 2,6-dichlorophenyl (dcp)] gives four-coordinate, homoleptic organovanadium(III) derivatives with the formula [Li(thf)(4)][V(III)(R(Cl))(4)] (R(Cl) = C(6)Cl(5) (1), tcp (2), dcp (3)). The anion [V(III)(C6Cl5)4]- has an almost tetrahedral geometry, as observed in the solid-state structure of [NBu4][V(C6Cl5)4] (1') (X-ray diffraction). Compounds 1-3 are electrochemically related to the neutral organovanadium(IV) species [V(IV)(R(Cl))4] (R(Cl) = C6Cl5 (4), tcp (5), dcp (6)). The redox potentials of the V(IV)/V(III) semisystems in CH2Cl2 decrease with decreasing chlorination of the phenyl ring (E(1/2) = 0.84 (4/1), 0.42 (5/2), 0.25 V (6/3)). All the [V(IV)(R(Cl))4] derivatives involved in these redox couples could also be prepared and isolated by chemical methods. The arylation of [VCl(3)(thf)(3)] with LiC6F5 also gives a homoleptic organovanadium(III) compound, but with a different stoichiometry: [NBu4]2[V(III)(C6F5)5] (7). In this five-coordinate species, the C6F5 groups define a trigonal bipyramidal environment for the vanadium atom (X-ray diffraction). EPR spectra for the new organovanadium compounds 1-6 are also given and analysed in terms of an elongated tetrahedral structure with C(2v) local symmetry. It is suggested that the R(Cl) groups exert a protective effect towards the vanadium centre.  相似文献   

6.
The solvent extraction of vanadium by a chloroform solution of α-benzoin oxime was investigated. The most favorable condition for the extraction has been found in the pH rang of 1.8 to 3.0 in sulfate or chloride buffer solutions, but with better extraction efficiency when sulfate was used. A solution of 2×10?2 M α-benzoin oxime in chloroform was used, and 1×10?4 to 2×10?2 M vanadium(V) was extracted favorably in about 89% yield by a single extraction, and in about 97% yield by a double extraction. The effects of shaking time, concentration of α-benzoin oxime, and diverse ions have also been investigated. Vanadium(V) can be readily extracted without interference in the presence of copper(II), aluminum(III), iron(III), silver(I), zirconium(IV), and chromium(III).  相似文献   

7.
Saji J  Prasada Rao T  Ramamohan TR  Reddy ML 《Talanta》1999,50(5):1065-1071
The extraction behaviour of iron(III) and titanium(IV) from acidic chloride solutions has been investigated using 3-phenyl-4-benzoyl-5-isoxazolone (HPBI) in xylene as an extractant. The results demonstrate that these metal ions are extracted into xylene as Fe(PBI)(3) and TiO(PBI)(2). The equilibrium constants of the extracted complexes have been deduced by non-linear regression analysis by taking into account complexation of metal ion with inorganic ligands in the aqueous phase and all plausible complexes extracted into the organic phase. IR and proton NMR ((1)H NMR) spectra were used to further clarify the nature of complexes extracted into organic phase. The effect of the nature of the diluent on the extraction of iron(III) and titanium(IV) has been studied and correlated with dielectric constants. The extraction behaviour of titanium(IV) has also been compared with that of other metal ions, viz. magnesium(II), vanadium(V), chromium(VI), iron(III), manganese(II), zinc(II) and zirconium(IV), which are associated with the titanium in waste chloride liquors of the titanium-mineral-processing industry.  相似文献   

8.
A reversed-phase liquid chromatographic method for the determination of trace amounts of vanadium is described. Metal ions are converted into 2-(8-quinolylazo)-5-N,N-diethylaminophenol chelates in an off-line system. The chelates are injected onto a Zorbax CN column and separated with an aqueous acetonitrile mobile phase containing no chromogenic reagent. Unter these conditions, only vanadium(V) is spectrophotometrically detected at 540 nm among the metal ions Al(III), Ba(II), Ca(II), Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Ga(III), Hg(II), Mg(II), Mn(II), Ni(II), Pb(II), V(V) and Zn(II). Amounts of 8.0–200 pg of vanadium(V) in 100-μl injections can be determined without interference from 10-fold molar excesses of many cations. At 0.001 a.u.f.s., the detection limit (twice the peak-to-peak noise) for vanadium(V) is 8.0 pg in 100 μl of injected solution and the relative standard deviation at 120 pg of vanadium(V) in a 100-μl injection is 3.5%. The proposed method is applied to the determination of vanadium in rain water and airborne particulates.  相似文献   

9.
Khuhawar MY  Arain GM 《Talanta》2006,68(3):535-541
Liquid chromatographic method has been developed, based on precolumn derivatization of vanadium(V) with 2-acetylpyridine-4-phenyl-3-thiosemicarbazone (APPT). The complex is extracted in chloroform together with palladium(II), tin(II) and iron(III) and eluted and separated completely from Kromasil 100 C-18, 10 μm (25 cm × 4.6 mm i.d.) column with methanol:water:acetonitrile (60:30:10, v/v/v) with a flow rate of 1 ml/min. UV detection was at 260 nm. Linear calibration curve was obtained with 1-12.5 μg/ml vanadium(V) with detection limit of 8 ng/injection (20 μl). A number of metal ions tested did not affect the determination of vanadium. The test mixtures were analyzed for vanadium(IV) and vanadium(V) contents and relative% error was obtained ±1-8%. The method was applied for the determination of vanadium in petroleum oils and mineral ore samples with vanadium contents of 0.32-2.3 and 121.7-717.3 μg/g with R.S.D. of 1.5-4.5 and 0.38-4.7%, respectively. The results correlated with reported values and by atomic absorption spectrophotometry.  相似文献   

10.
The complex formation of vanadium(IV) with 1,3,5-triamino-1,3,5-trideoxy-cis-inositol (taci) and 1,3,5-trideoxy-1,3,5-tris(dimethylamino)-cis-inositol (tdci) was studied in aqueous solution and in the solid state. The formation constants of [V(IV)O(taci)](2+), [V(IV)O(tdci)](2+), and [V(IV)(tdci)(2)](4+) and of the deprotonation product [V(IV)(tdci)(2)H(-)(1)](3+) were determined (25 degrees C, 0.1 M KNO(3)). Cyclic voltammetry measurements established a reversible one-electron transfer for the [V(IV)(tdci)(2)H(-)(m)]((4)(-)(m))/[V(III)(tdci)(2)H(-)(n)]((3)(-)(n)) couple (0 相似文献   

11.
Sahu B  Tandon U 《Talanta》1987,34(7):653-654
N-Benzyl-2-naphthohydroxamic acid extracts vanadium(V) selectively and quantitatively into chloroform from 2-8.5M hydrochloric acid in the presence of Mo(VI), Zr(IV) and Ce(IV). The extraction takes place quickly and gives a stable reddish-violet extract which shows an absorption maximum at 505 nm with molar absorptivity of (5.34 +/- 0.05) x 10(3) 1.mole(-1).cm(-1). The optimum range for the determination is 2.2-7.4 ppm of vanadium(V) in the final solution. The method has been used for the determination of vanadium in steels.  相似文献   

12.
l-(o-Carboxyphenyl)-3-hydroxy-3-methyltriazene is proposed as an excellent reagent for the spectrophotometric determination of iron(III) and titanium(IV), and also for the separation of titanium from a large quantity of iron as well as other cations and anions. Iron(III) forms an anionic violet 1:2 complex at pH 4.0–9.4, and a cationic green 1:1 complex at pH 1.5–2.0, with absorption maxima at 570 nm and 660 nm, respectively. The violet complex is quantitatively extracted in chloroform containing n-octylamine at pH 3.0–9.0. The green and the violet iron(III) complexes obey Beer's law, the respective optimal ranges being 8.9–35.8 and 3.9–11.2 p.p.m. The yellow titanium chelate extracted into chloroform (absorption maximum at 410 nm) between pH 1.0 and 3.5, can be re-extracted into concentrated sulphuric acid a violet colour being produced with absorption maximum at 530 nm. Beer's law is obeyed in the ranges 0.8–5.7 p.p.m. for the titanium complex in chloroform and 3.4–19.2 p.p.m. when extracted in concentrated sulphuric acid. Interferences from diverse ions are not severe. Procedures for the separation and determination of titanium in the presence of a large quantity of iron are given. The isolation of the iron(III) and vanadium(IV and V) complexes, and their properties, are described.  相似文献   

13.
Iranpoor N  Maleki N  Razi S  Safavi A 《Talanta》1992,39(3):281-284
Determination of vanadium at low concentrations is easily performed with pyrogallol as a ligand which forms a bluish-violet complex with vanadium(III), (IV) or (V). The colour of the bluish-violet complex (lambda(max) = 580 nm) contrasts well with the colour of both pyrogallol and vanadium. The complexes are stable for several hours. Beer's law is obeyed over the range 0-14 mug/ml vanadium at pH 6. The apparent molar absorptivity at 580 nm is (7.75 +/- 0.25) x 10(3)1.mole(-1).cm(-1). The effects of diverse ions on the determination of vanadium have been fully studied. Only Mo(VI) and W(VI) interfere seriously. The method is selective, sensitive and can be applied to the determination of total vanadium in a variety of samples.  相似文献   

14.
The use of elastic polyurethane foam as a support for chloranil was proved successful. Reductions of cerium(IV), vanadium(V) and iron(II) on foam-filled columns were carried out quantitatively and rapidly. The effect of flow-rate and temperature on the reduction of each metal ion was examined in detail. Cerium(IV) was reduced quantitatively on passing through the foam-redox column at flow-rates of 2–11 ml min-1 at room temperature. The reduction of vanadium(V) and iron(III) was slower; complete reduction occurred only at flow-rates up to 4 and 2 ml min-1 for V(V) and Fe(III), respectively. At 35°, however, it was possible to use flow-rates of 7 and 6 ml min-1 for the quantitative reduction of V(V) and Fe(III), respectively.  相似文献   

15.
Mononuclear oxovanadium(IV) and dioxovanadium(V) complexes of tris(2-pyridylmethyl)amine (tpa) have been prepared for the first time. Crystal structure determinations of three oxovanadium(IV) complexes, [VO(SO4)(tpa)], [VOCl(tpa)]PF6, or [VOBr(tpa)]PF6, and a dioxovanadium(v) complex [V(O)2(tpa)]PF6 disclosed that the tertiary nitrogen of the tpa ligand always occupies the trans-to-oxo site. The structures of an oxo-peroxo complex [VO(O2)(tpa)]Cl that was prepared previously and of a mu-oxo vanadium(III) complex [{VCl(tpa)}2(mu-O)](PF6)2 have also been determined. The tertiary nitrogen is located at a trans site to the peroxo and chloride ligands, respectively. The total sums of the four V-N bond lengths from the tpa ligand are remarkably similar among the six complexes, indicating that the vanadium oxidation states become less influential in tpa bonding due primarily to the coordination of electron-donating oxo ligand(s). Absorption spectra of [VOCl(tpa)]+ in acetonitrile showed a significant change upon addition of p-toluenesulfonic acid and HClO4, but not on addition of benzoic acid. Protonation at the oxo ligand by the former two acids is suggested. Cyclic voltammetric studies in acetonitrile verified the proton-coupled redox behavior of the V(III)/V(IV) process involving the oxo ligand for the first time. From the dependence of the added p-toluenesulfonic acid to the CV, redox potentials for the following species have been estimated: [V(IV)OCl(tpa)]+/[V(III)OCl(tpa)](E1/2=-1.59 V vs. Fc+/Fc), [V(IV)(OH)Cl(tpa)]2+/[V(III)(OH)Cl(tpa)]+(Epc=-1.34 V), [V(IV)(OH2)Cl(tpa)]3+/[V(III)(OH2)Cl(tpa)]2+(Epa=-0.49 V), and [V(IV)Cl2(tpa)]2+/[V(III)Cl2(tpa)]+(E1/2=-0.89 V). The reduction of [V(V)(O)2(tpa)]+ in 0.05 M [(n-Bu)4N]PF6 acetonitrile showed a major irreversible reduction wave V(V)/(IV) at -1.48 V. The metal reduction potentials of the oxovanadium(IV) and dioxovanadium(V) species are very close, reinforcing the significant influence of the oxo ligand(s).  相似文献   

16.
A simple and sensitive method for the speciation of vanadium(III), (IV), and (V) was developed by using high performance liquid chromatography and inductively coupled plasma mass spectrometry (HPLC-ICPMS). The EDTA-complexed vanadium species were separated on a strong anion exchange column with an eluent containing 2 mM EDTA, 3% acetonitrile, and 80 mM ammonium bicarbonate at pH 6. Each analysis was complete in 5 min. The detection limits were 0.6, 0.7 and 1.0 μg L−1 for V(III), V(IV), and V(V), respectively. The method was applied to coke pore water samples from an oilsand processing/upgrading site in Fort McMurray, Alberta, Canada and to Shewanella putrefaciens CN32 bacterial cultures incubated with V(V). In the coke pore water samples, V(IV) and V(V) were found to be the major species. For the first time, V(III) was detected in the bacterial cultures incubated with V(V).  相似文献   

17.
Karve MA  Khopkar SM 《Talanta》1993,40(6):913-917
A novel method is proposed for the solvent extraction of niobium(V). A 0.1M solution of Aliquat 336S in xylene quantitatively extracts microgram quantities of niobium(V) from 0.01M ascorbic acid at pH 3.5-6.5. Niobium from the organic phase is stripped with 0.5M nitric acid and determined spectrophotometrically in the aqueous phase as its complex with TAR. The method permits separation of niobium not only from tantalum(V) but also from vanadium(IV), titanium(IV), zirconium(IV), thorium(IV), chromium(III), molybdenum(VI), uranium(VI), iron(III), etc. Niobium from stainless steel was determined with a precision of 0.42%.  相似文献   

18.
A new and convenient spectrophotometric method for the estimation of vanadium(IV) with NTA is described. The minimum ratio of metal ion to ligand, working pH, wavelength for maximum absorbance of the complex ion, and the effect of various cations and anions are described. The complex ion obeys Beer's law in the concentration range 1–32 mmol/liter of the vanadium(IV) ion. It is observed that iron(II), cobalt(II), nickel(II), copper(II), and oxidizing anions such as chromate and nitrite interfere in this determination, whereas managanese(II), chromium(III), iron(III), and anions like nitrate, chloride, bromide, iodide, thiocyanate, sulfate, and sulfite do not have any effect. Excessive amounts of acetate, phosphate, oxalate, tartrate and thiosulfate must also be avoided in this determination. Anions and cations which interfere in the determination of vanadium(IV) by NTA should not be present in the system.  相似文献   

19.
Dalvi MB  Khopkar SM 《Talanta》1978,25(10):599-602
Uranium was quantitatively extracted with 4% Amberlite LA-1 in xylene at pH 2.5-4.0 from 0.001 M malonic acid. It was stripped from the organic phase with 0.01 M sodium hydroxide and determined spectrophotometrically at 530 nm as its complex with 4-(2-pyridylazo) resorcinol. Of various liquid anion-exchangers tested, Amberlite LA-1 was found to be best. Uranium was separated from alkali and alkaline earth metal ions, thallium(I), iron(II), silver, arsenic(III) and tin(IV) by selective extraction, and from zinc, cadmium, nickel, copper(II), cobalt(II), chromium(III), aluminium, iron(III), lead, bismuth, antimony(III) and yttrium by selective stripping. The separation from scandium, zirconium, thorium and vanadium(V) was done by exploiting differences in the stability of chloro-complexes.  相似文献   

20.
Summary In continuation of our previous work in which salicylic acid was reported to give a very sensitive and an almost specific colour reaction with vanadium(V), we have now found that vanadium(V) reacts with resorcinol in 20 N sulphuric or phosphoric acid solution to give a blue coloured product, which gives a vivid red fluorescence under filtered ultraviolet light. A sensitive test for vanadium(V) has now been developed making use of this red fluorescence or of the bright blue colour. Dichromate gives a somewhat less sensitive violet colour with the resorcinol reagent under the same conditions, but the product does not fluoresce. Manganese(VII), cerium(IV), iron(III), titanium(IV), uranium(VI), molybdenum(VI) and tungsten(VI) do not interfere with the colour reaction or the fluorescence test for vanadium(V).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号