首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of a porous glassy carbon (PGC) material as a packed-column SFC stationary phase has been previously demonstrated [1]. The material is further characterized in terms of its retention characteristics. The effects of variations in mobile phase composition, pressure, and temperature conditions are evaluated. Variation of temperature and pressure yielded expected results, specifically, decreased solute capacity factors with increased mobile phase density. The choice of supercritical fluid mobile phase allows the most notable control of solute retention; this was evaluated by adding low percentages of organic modifiers of varying molecular weights to the supercritical carbon dioxide mobile phase. PGC-SFC provides reversed phase characteristics similar to those found for PGC-HPLC. Porous glassy carbon has selectivity characteristics previously unavailable in supercritical fluid chromatography. Use of porous glassy carbon in supercritical fluid chromatography may provide distinct advantages in difficult analytical separations, allowing separations of molecules with only slight structural differences.  相似文献   

2.
Tocochromanols consisting of tocopherols and tocotrienols, is collectively known as vitamin E. Similarity in their structures, physical and chemical properties rendered the tocochromanols to be subject of chromatography interest. Supercritical fluid chromatography is a highly efficient tool for the separation and analysis of tocochromanols. Separation and analysis of tocochromanols using supercritical fluid chromatography had been carried out in the past using capillary or packed columns. Each of these techniques offer their own advantages and drawbacks. Besides being used for analysis, packed column supercritical fluid chromatography found applications as a purification and content enrichment tool. Emergence of new equipment and stationary phase technologies in recent years also helped in making supercritical fluid chromatography a highly efficient tool for the separation and analysis of tocochromanols. This paper gives an insight into the use of capillary and packed columns in supercritical fluid chromatography for the separation and/or analysis of tocochromanols. The types of stationary phase used, as well as chromatographic conditions are also discussed.  相似文献   

3.
Summary A novel inorganic synthetic clay material (SC) has been evaluated as the stationary phase in packed-column, supercritical fluid chromatography (SFC). The molecular recognition capability of the SC stationary phase in SFC for polycyclic aromatic hydrocarbons has been evaluated using carbon dioxide and carbon dioxide modified with methanol as the mobile phase. This recognition derives from the layer structure of the SC material which acts as a slit to distinguish non-planar solutes from the molecular-molecular interaction between solute and stationary phase and leads to smaller retention for non-planar solutes. The recognition capability is also dependent on the SFC conditions such as column pressure and column temperature.  相似文献   

4.
Instrumentation was assembled that allows the use of supercritical ammonia as mobile phase in capillary supercritical fluid chromatography. Several modifications of the typical chromatographic system were necessary, especially with respect to injection and detection. In addition, the stabilities of various polysiloxane stationary phases were studied. The chromatography of polarizable and polar basic materials was demonstrated using a nonpolar polysiloxane stationary phase.  相似文献   

5.
Two methods for the separation of cholesterol esters, based on the number of double bonds in their fatty acid moieties, are presented. Silver ion chromatography, usually performed on thin-layer chromatographic plates, was made suitable for high-performance liquid chromatography (HPLC) and solid-phase extraction. Separation on a bonded sulphonic acid phase loaded with silver ions was achieved with cholesterol esters containing up to six double bonds in their fatty acid moieties. No cross-contamination between fractions with different numbers of double bonds was detected with the HPLC method, was demonstrated by subsequent gas chromatographic analysis of the fatty acid moieties, following transmethylation. For adequate separations with the solid-phase extraction columns it proved important to avoid overloading. The methods may be of use for the off-line analyses of the sterol compositions of the isolated fractions, which each contain sterol esters with an equal number of double bonds in their fatty acid moieties.  相似文献   

6.
Enantiomeric pairs of triticonazole have been successfully separated by supercritical fluid chromatography coupled with a tris(3,5‐dimethylphenylcarbamoyl) cellulose‐coated chiral stationary phase in this work. The effects of co‐solvent, dissolution solvent, flow rate, backpressure, and column temperature have been studied in detail with respect to retention, selectivity, and resolution of triticonazole. As indicated, the co‐solvents mostly affected the retention factors and resolution, due to the different molecular structure and polarity. In addition, the dissolution solvents, namely, chloromethanes and alcohols, have been also important for enantioseparation because of the different interaction with stationary phase. Higher flow rate and backpressure led to faster elution of the triticonazole molecules, and the change of column temperature showed slight effect on the resolution of triticonazole racemate. Moreover, a comparative separation experiment between supercritical fluid chromatography and high performance liquid chromatography revealed that chiral supercritical fluid chromatography gave the 3.5 times value of Rs/tR2 than high performance liquid chromatography, which demonstrated that supercritical fluid chromatography had much higher separation efficiency.  相似文献   

7.
Summary Porous glass beads were evaluated as the stationary phase in supercritical fluid chromatography using methanol or diethyl ether as the mobile phase. Separation of oligomers of styrene and methylphenylsiloxane were demonstrated by using a microcolumn packed with prous glass beads.  相似文献   

8.
A cellulose tris‐(3,5‐dimethylphenylcarbamate)‐based chiral stationary phase was studied as a tool for the enantioselective separation of 21 selected analytes with different pharmaceutical and physicochemical properties. The enantioseparations were performed using supercritical fluid chromatography. The effect of the mobile phase composition was studied. Four different additives (diethylamine, triethylamine, isopropylamine, and trifluoroacetic acid) and isopropylamine combined with trifluoroacetic acid were tested and their influence on enantioseparation was compared. The influence of two different mobile phase co‐solvents (methanol and propan‐2‐ol) combined with all the additives was also evaluated. The best mobile phase compositions for the separation of the majority of enantiomers were CO2/methanol/isopropylamine 80:20:0.1 v/v/v or CO2/propan‐2‐ol/isopropylamine/trifluoroacetic acid 80:20:0.05:0.05 v/v/v/v. The best results were obtained from the group of basic β‐blockers. A high‐performance liquid chromatography separation system composed of the same stationary phase and mobile phase of similar properties prepared as a mixture of hexane/propan‐2‐ol/additive 80:20:0.1 v/v/v was considered for comparison. Supercritical fluid chromatography was found to yield better results, i.e. better enantioresolution for shorter analysis times than high‐performance liquid chromatography. However, examples of enantiomers better resolved under the optimized conditions in high‐performance liquid chromatography were also found.  相似文献   

9.
A comparison is made between dichlorosilanes and cyclic siloxanes as starting materials in the synthesis of stationary phases for capillary gas chromatography (CGC) and supercritical fluid chromatography (SFC). Siloxanes containing one or more of the side groups methyl, vinyl, phenyl, and cyanoethyl in various ratios were synthesized and compared. These phases were characterized by chromatographic (gel permeation, GPC), spectroscopic (IR, 1H NMR, 29Si NMR), and thermal (DSC) methods. Coated fused silica columns were evaluated with respect to polarity, crosslinkability with several free-radical initiators, and thermal stability. A new liquid phase, 7% cyanoethyl, 7% phenyl, 1% vinyl methyl polysiloxane is shown to be more polar than OV-1701, more temperature stable, easily crosslinked and suitable for use in supercritical fluid chromatography.  相似文献   

10.
Summary The influence of column temperature and pressure on the planarity selectivity of encapsulated and polymeric octadecylsilane-modified silicas was examined using carbon dioxide mobile phase in supercritical fluid and liquid chromatography. The use of liquid carbon dioxide was found to enhance remarkably the molecular planarity recognition capability of the polymeric stationary phase compared with supercritical conditions. The influence of pressure and temperature on selectivity was seen to be significant with the polymeric phase but less with the encapsulated. It seems that pressure and temperature change the morphology of the polymeric phase to a greater extent than the encapsulated one.  相似文献   

11.
超临界流体色谱流程设计及其应用   总被引:1,自引:1,他引:0  
周良模  沈玉峰 《分析化学》1993,21(8):983-987
本文设计了多功能超临界流体色谱流程,流程中包括毛细管/微填充柱SFC,GC,计算机控制温度、压力、密度及信号采集、处理,配置有超临界流体萃取池,解决了超临界流体色谱分流口易堵问题。利用该流程,将石腊、DC-200气相色谱固定相、黄油、蜂蜡、救心油、红花油等样品进行超临界流体色谱分离。  相似文献   

12.
Gezici O  Kara H 《Talanta》2011,85(5):2405-2410
In the present study, metal binding property of humic acid (HA) was successfully adapted to the ligand-exchange concept, and metal-loaded immobilized humic acid was used as a ligand exchanger stationary phase for separation of some nucleosides. Humic-acid bonded aminopropyl silica (EC-HA-APS) was turned into ligand exchanger forms by loading aqueous solutions of Cu2+, and Co2+ to the column (4.6 × 150; as mm) packed with EC-HA-APS. Metal ion solutions were loaded to the column in a stepwise manner where the concentration of metal ion solution being loaded to the column was increased gradually between 5 and 100 mM. The progress of metal loading process was monitored via the breakthrough curves propagated stepwise. Ligand-exchange chromatography (LEC) studies were performed on an HPLC system, and chromatographic behaviors of the studied nucleosides (i.e. uridine, Urd; thymidine, Tyd; cytidine, Cyd; adenosine, Ado; and guanosine, Guo) were investigated on Cu2+ and Co2+ loaded forms of the EC-HA-APS (Cu-EC-HA-APS and Co-EC-HA-APS). Effect of mobile phase composition, temperature, and the type of metal ion loaded to the column on the retentive behaviors of the compounds was studied, in detail. The studied solutes exhibited mixed-mode RPLC/LEC behavior on the stationary phase. Metal-loaded column (M-EC-HA-APS) was easily regenerated into its original form, EC-HA-APS, with 98 ± 2% metal recoveries, by using aqueous mixture of EDTA + NH3 at pH = 7.5. Thus, the stationary phase exhibited a high flexibility between RPLC and LEC modes. This property, also, made it possible to convert the stationary phase into various ligand exchanger forms by loading different metal ions. Hence, capacity and selectivity of the stationary phase towards the studied species was manipulated easily by loading different metal ions to the stationary phase. Baseline separation for the studied species was achieved on Cu-EC-HA-APS and Co-EC-HA-APS and some differentiations were observed in capacity and selectivity, depending on the type of metal loaded. Thus, being as the first endeavor on usability of immobilized HA as a ligand exchanger stationary phase, the present study is believed to be useful to understand multifunctional character of HA-based solid/stationary phases.  相似文献   

13.
Due to green and environment-friendly characteristics, ultra-high-performance supercritical fluid chromatography has been widely used in analytical fields in recent years, but until now few reports are available for monosaccharide compositional analysis of macromolecule polysaccharides. In this study, an ultra-high-performance supercritical fluid chromatography technology with an unusual binary modifier is used to determine the monosaccharide compositions of natural polysaccharides. Each carbohydrate herein is simultaneously labeled as 1-pheny-3-methyl-5-pyrazolone and acetyl-derivative via pre-column derivatizations aiming to increase UV absorption sensitivity and decrease water solubility. Ten common monosaccharides are fully separated and detected on ultra-high-performance supercritical fluid chromatography combined with a photo-diode array detector by systematic optimization of multiple relevant parameters, for example, column stationary phases, organic modifiers, additives, flow rates, and so on. Compared with carbon dioxide as a mobile phase, the addition of a binary modifier increases the resolution of analytes. Additionally, this method has the advantages of small consumption of organic solvent, safety, and being environmental-friendly. It has been successfully applied for full monosaccharide compositional analysis of heteropolysaccharides from Schisandra chinensis fruits. To sum up, a new alternative approach is provided for monosaccharide compositional analysis of natural polysaccharides.  相似文献   

14.
The coating properties of a novel water stationary phase used in capillary supercritical fluid chromatography were investigated. The findings confirm that increasing the length or internal diameter of the type 316 stainless‐steel column used provides a linear increase in the volume of stationary phase present. Under normal operating conditions, results indicate that about 4.9 ± 0.5 μL/m of water phase is deposited uniformly inside of a typical 250 μm internal diameter 316 stainless‐steel column, which translates to an area coverage of about 6.3 ± 0.5 nL/mm2 regardless of dimension. Efforts to increase the stationary phase volume present showed that etching the stainless‐steel capillary wall using hydrofluoric acid was very effective for this. For instance, after five etching cycles, this volume doubled inside of both the type 304 and the type 316 stainless‐steel columns examined. This in turn doubled analyte retention, while maintaining good peak shape and column efficiency. Overall, 316 stainless‐steel columns were more resistant to etching than 304 stainless‐steel columns. Results indicate that this approach could be useful to employ as a means of controlling the volume of water stationary phase that can be established inside of the stainless‐steel columns used with this supercritical fluid chromatography technique.  相似文献   

15.
Summary The retention behavior of a set of polycyclic aromatic hydrocarbons in supercritical fluid chromatography have been studied on a chemically bonded stationary phase based upon a side chain liquid crystalline polymer (LCP) with carbon dioxide-based mobile phase. The effects of the mobile phase pressure, column temperature and amount of mobile phase organic modifier have been investigated in order to detect a possible structural change in the liquid crystal polymer linked to the silica support. The influence of these factors on the selectivity coefficients has also been studied. Two distinctive behaviors with temperature are noted at low pressure on the one hand and at higher pressure on the other. This change in behavior is based on the density of the supercritical CO2 and the PAH volatility rather than on any specific stationary phase structural change. Both lower mobile phase pressure and amount of mobile phase modifier are required to obtain better selectivities. Better planarity recognition is observed in SFC than in HPLC with these new bonded liquid crystal stationary phases. The bonded liquid crystal phase is only weakly affected by the addition of organic modifier in the supercritical CO2.  相似文献   

16.
Cyclofructan‐based chiral stationary phases were previously shown as a promising possibility for separation of chiral compounds in high performance liquid chromatography. In this work retention and enantiodiscrimination properties of the 3,5‐dimethylphenyl carbamate cyclofructan 7 chiral stationary phase are described in supercritical fluid chromatography. The results obtained in both of the separation methods were compared. A set of compounds with axial or central chirality was used as analytes. The effect of mobile phase composition, that is, addition of different alcohol modifiers and/or trifluoroacetic acid to carbon dioxide, was examined in the supercritical system. Similarly, mobile phases composed of hexane modified with propan‐2‐ol and/or trifluoracetic acid were used in liquid chromatography. A linear free energy relationship model was utilized for characterization of interactions that are decisive for retention and separation in both techniques. Dispersion interactions showed similar negative values using both methods. The main contribution of hydrogen bond acidity was also comparable for both methods. The propensity to interact with n‐ and/or π‐electron pairs of solutes was significant only in the supercritical system.  相似文献   

17.
A comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones has been conducted. Nine different mixtures of bath salts were analyzed in this study. The three different chromatographic techniques were examined using a general set of controlled synthetic cathinones as well as a variety of other synthetic cathinones that exist as positional isomers. Overall 35 different synthetic cathinones were analyzed. A variety of column types and chromatographic modes were examined for developing each separation. For the ultra high performance supercritical fluid chromatography separations, analyses were performed using a series of Torus and Trefoil columns with either ammonium formate or ammonium hydroxide as additives, and methanol, ethanol or isopropanol organic solvents as modifiers. Ultra high performance liquid chromatographic separations were performed in both reversed phase and hydrophilic interaction chromatographic modes using SPP C18 and SPP HILIC columns. Gas chromatography separations were performed using an Elite‐5MS capillary column. The orthogonality of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography was examined using principal component analysis. For the best overall separation of synthetic cathinones, the use of ultra high performance supercritical fluid chromatography in combination with gas chromatography is recommended.  相似文献   

18.
Summary A model is devised using molecular mechanics to simulate chromatographic separations of enantiomers. Theoretical results derived from this model are compared with experimental findings obtained using supercritical fluid chromatography. The model is then developed to incorporate the effects of binding the stationary phase to a matrix. Computed results show that addition of the matrix into the model has significant effects on the ability of the stationary phase to separate racemic mixtures.  相似文献   

19.
Summary A model is devised using molecular mechanics to simulate chromatographic separations of enantiomers. Theoretical results derived from this model are compared with experimental findings obtained using supercritical fluid chromatography. The model is then developed to incorporate the effects of binding the stationary phase to a matrix. Computed results show that addition of the matrix into the model has significant effects on the ability of the stationary phase to separate racemic mixtures.  相似文献   

20.
Ultra high performance liquid chromatography and supercritical fluid chromatography techniques are favored because of their high efficiency and fast analysis speed. Although many sample preparation techniques have been coupled with common liquid chromatography online, the online coupling of sample preparation with the two popular chromatography techniques have gained increasing attention owing to the increasing requirements of efficiency and sensitivity. In this review, we have discussed and summarized the recent advances of the online coupling of sample preparation with ultra high performance liquid chromatography and supercritical fluid chromatography techniques. The main sample preparation techniques that have been coupled with ultra high performance liquid chromatography online are solid‐phase extraction and in‐tube solid‐phase microextraction, while solid‐phase extraction and supercritical fluid extraction are the main techniques that have been coupled with supercritical fluid chromatography online. Especially, the strategies for online coupling of sample preparation with chromatography techniques were summarized. Typical applications and growing trends of the online coupling techniques were also discussed in detail. With the increasing demands of improving the efficiency, throughput, and analytical capability toward complex samples of the analysis methods, online coupling of sample preparation with chromatography techniques will acquire further development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号