首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sequential injection systems for wine analysis have been developed in recent years for determination of more than 20 species. Several aspects of these systems are reviewed in the present paper. Special focus is given to implementation of in-line sample treatment and adaptation of system operation through software control to enable determination in different types of wine. The strategies used to enhance selectivity and the capacity for multi-parameter determination are also addressed.  相似文献   

2.
Ethanol in wines was determined by flow injection analysis with an amperometric detector using an oxidized nickel wire. Solid-phase extraction with a strong anion exchanger was used to remove interferences such as organic acids from the matrix, and the residue of the extraction was injected directly into the FIA system. The recoveries of ethanol from wines spiked with standards ranged from 101% to 103%. The response of the nickel electrode to ethanol is dependent on the applied potential and the pH of the carrier. The optimal conditions for the detection of ethanol were an applied potential of +0.60 V (vs. Ag/AgCl) in a carrier of 100 mM sodium hydroxide solution. The electrode exhibited a linear response from 10−5 to 10−3 M, with a detection limit of 1 × 10−6 M. The method was demonstrated by the determination of ethanol in wines.  相似文献   

3.
在碱性条件下,佐米曲谱坦对鲁米诺-K3[Fe(CN)6]化学发光体系有较强的抑制作用,据此建立了佐米曲谱坦的流动注射化学发光分析法。该法的化学发光抑制值ΔI与佐米曲谱坦质量浓度在2.0×10-6~1.2×10-4g/mL范围内,呈良好的线性关系,检出限为7.6×10-7g/mL。对2.5×10-5g/mL佐米曲谱坦测定的相对标准偏差为1.2%(n=11)。方法适用于佐米曲谱坦片中佐米曲谱坦的测定。  相似文献   

4.
流动注射化学发光法测定那格列奈   总被引:2,自引:0,他引:2  
在碱性介质中,那格列奈对Luminol-H2O2体系的化学发光有很强的抑制作用,据此建立了流动注射化学发光抑制法测定那格列奈的新方法.该法的化学发光抑制值△I与那格列奈的质量浓度在2.0×10-8~1.0×10-6 g/mL范围内,呈良好的线性关系,检出限为1.4×10-8 g/mL;对4.0×10-7 g/mL那格列奈连续进行11次平行测定,相对标准偏差为1.0%;通过对荧光光谱的研究,对机理进行了初步探讨.  相似文献   

5.
The performance of sequential injection (SI) systems has often been criticized for its low sampling frequency. The present work describes a SI system where an injection valve and an additional pump were incorporated to enhance sample throughput rate. The proposed system was applied to the enzymatic determination of glycerol and ethanol in wines, using spectrophotometric detection and immobilized glycerol and alcohol dehydrogenases. The method proposed was applied to the determination of ethanol between 0.10 and 0.50% (v/v) and glycerol between 0.03 and 0.30 g l−1. These ranges were appropriate for determination in table and port wines, since samples were diluted 50 times before introduction into the system. The results obtained from 15 wine samples were statistically comparable to those obtained by the reference methods, with good repeatability (R.S.D.<3.4%, n=10). The sampling rate was 22.5 h−1, corresponding to 45 determinations per hour. This way, the time required for each determination was decreased by 30% when compared to a conventional SI system.  相似文献   

6.
A flow injection analysis (FIA) catalytic spectrophotometric method for the determination of dissolved iron in seawater was further developed to yield a more sensitive assay with a low detection limit. The method employs an initial sample acidification step followed by an iron pre-concentration step involving an in-line 8-hydroxy-quinoline (8-HQ) metal-chelating resin column. The copper capacity and elution efficiency, as well as the iron FIA performance of three trace-metal clean resins were compared, resulting in the selection of a clean silica gel support for the 8-HQ ligand. The concentrated sample is eluted from the resin with an acidic carrier and mixed with reagents, initiating an iron-catalyzed, color-forming reaction. Increasing the reaction temperature from 18 to 30 °C doubled the sensitivity; reaction temperature control was necessary to obtain good reproducibility in the field. Reagent blanks were as low as 0.05 nM and a detection limit of 0.016 nM was obtained from three times the S.D. of a 0.06 nM seawater sample repeated six times. A 0.06 nM detection limit was calculated from shipboard experiments where total dissolved iron was determined for 10 different samples from the same station. The instrumental sensitivity and precision evolved to the point where the blank associated with the technique is the major factor influencing its detection limit.  相似文献   

7.
Sohn OJ  Han KA  Rhee JI 《Talanta》2005,65(1):185-191
In this study, a flow injection analysis (FIA) system using a cartridge of immobilized isocitrate lyase (ICL) and isocitrate dehydrogenase (ICDH) was developed to monitor the concentrations of succinic acid in biotechnological processes. The ICL and ICDH immobilized on VA-Epoxy Biosynth E3-carrier had a good operational lifetime (up to 24 h) and storage stability (up to 30 days). The FIA system with the immobilized ICL/ICDH cartridge was characterized with respect to the factors affecting the activity of the immobilized enzymes, such as pH of carrier solution, temperature, sample matrix, etc. Optimal pH value of the immobilized enzymes was slightly shifted in the alkaline range, i.e. 9.0. Some components such as 10 g l−1 lactose, 3 g l−1 malate and 3 g l−1 oxaloacetate in sample solution had significant activating effects (more than 10%) on the response of the FIA system. But the activity of the immobilized ICL and ICDH was not largely influenced by some components like imidazole (1 mM), sodium azide (10 mM) and semicarbazide (2 g l−1) added to carrier buffer solution. The FIA system with an enzyme cartridge was applied to on-line monitor the concentrations of succinic acid in a continuously stirred reactor and a fermentation process of immobilized Escherichia coli, and showed good sensitivity and reliability of the FIA system developed in this work.  相似文献   

8.
The limits of detection (3s) for ascorbic acid were 5×10−8 M with acidic potassium permanganate using both flow injection analysis (FIA) and sequential injection analysis (SIA) whereas the soluble manganese(IV) afforded 1×10−8 M and 5×10−9 M for FIA and SIA, respectively. Determinations of ascorbic acid in Vitamin C tablets were achieved with minimal sample pretreatment using a standard additions calibration and gave good agreement with those of iodimetric titration.  相似文献   

9.
基于苯胺与亚硝酸盐的重氮化反应及反应产物与甲萘酚的显色,借助流动分析技术,实现了海水中苯胺含量的分析测定。体系以30.9g/L的NaCl做载液、人工海水配制标准样品,对各个影响因素进行了优化。苯胺浓度在0.01~1.0mg/L范围内与相对峰高呈线性关系,线性方程ΔH(mV)=200.53ρ+1.0728(n=8,ρ为苯胺浓度mg/L),相关系数R2=0.9982。方法的检出限(3σ)为0.005mg/L,相对标准偏差(RSD)为4.8%(n=11)。考察了共存离子、不同盐度样品对分析测定的影响。用于实际海水样品的分析,回收率为95.8%~106.6%。  相似文献   

10.
Haj-Hussein AT 《Talanta》1995,42(12):2053-2057
A flow-injection method for the ultraviolet spectrophotometric determination of silver, based on its reaction with nickelocyanide ion, Ni(CN)2−4, in ammoniacal buffer medium (pH 10) and subsequent measurement of the decrease in the absorption of the Ni(CN)2−4 complex at 275 nm is described. The calibration graph is linear in the range 10–400 μm silver. At a sampling rate of about 60 samples h−1 with 35 μl sample injections, precision was about 1% relative standard deviation. The proposed method was successfully applied to the determination of silver in some common silver minerals.  相似文献   

11.
Two flow injection analyses (FIA) methods for the determination of diffusion coefficients in a straight single tube FIA system were developed. Based on the analytical solution of the convection-diffusion equation, linear relationships of the logarithmic values of the dispersion coefficient (D) and the half-peak width (W1/2) with the diffusion coefficient (Dm) were obtained. Experiments were designed to verify these methods. For example, for potassium hexacyanoferrate (III) a Dm value of 0.72 × 105 cm2 s−1 was found versus a literature value of 0.76 × 105 cm2 s−1 (error, 5%). For potassium hexacyanoferrate (II) a Dm value of 0.67 × 105 cm2 s−1 was obtained versus a literature value of 0.63 × 105 cm2 s−1 (error, 6%). The diffusion coefficients of some important biomedical compounds, such as dopamine, epinephrine, norepinephrine and ascorbic acid, were then determined. The values of 105 Dm/cm2 s−1 are 0.60 ± 0.03, 0.44 ± 0.02, 0.60 ± 0.01 and 0.68 ± 0.06, respectively.  相似文献   

12.
流动注射化学发光法测定痕量NO_2~-的研究与应用   总被引:1,自引:0,他引:1  
Based on the principle of the reaction of NO2-with I-and formation of I2 in HCl solution,and the chemiluminescence(CL) reaction between luminol and I2 in an alkaline medium.A fairly sensitive,simple and rapid flow-injection analysis-chemiluminescence method for the determina-tion of trace nitrite with the luminal-I——NO2-coupling luminescence system has been developed.Experiment conditions of flow-injection analysis are optimized.When satisfying the condition that Luminol as 4.0×10-4 mol/L,0.7 % KI,0.04 mol/...  相似文献   

13.
Maki T  Soh N  Nakano K  Imato T 《Talanta》2011,85(4):1730-1733
A simple and sensitive flow injection fluorometric method for the determination of ascorbic acid is described. Perylenebisimide-linked nitroxide (PBILN) is used as a fluorescent reagent, which permits the selective determination of ascorbic acid. The fluorescence of the perylenebisimide moiety in PBILN is quenched by the nitroxide moiety, which is linked to the perylenebisimide. When a stream of a solution of ascorbic acid is merged with a stream of PBILN, the ascorbic acid reacts with the nitroxide moiety of PBILN to form hydroxylamine, and the fluorescence properties of the perylenebisimide moiety are recovered. As a result, a peak-shaped fluorescence signal is produced, which can be observed by a fluorescence detector located downstream. Under optimized conditions, a good linear relationship between the concentration of ascorbic acid and peak height in the concentration range from 0.5 to 10 μmol L−1 was found and the detection limit (S/N = 3) was 0.28 μmol L−1. The relative standard deviation for the determination of 4.0 μmol L−1 ascorbic acid samples was 1.0% (n = 5). The proposed method was applied to the determination of ascorbic acid in several soft drink beverages and the analytical results were in good agreement with those obtained using a conventional method.  相似文献   

14.
A reusable and sensitive immunoassay based on phenylboronic acid immunoaffinity reactor in combination with flow injection chemiluminescence (CL) for determination of glycoprotein was described. The reactor was fabricated by immobilizing 3-aminophenylboronic acid (APBA) on glass microbeads with γ-glycidoxypropyltrimethoxysilane (GPMS) as linkage. The α-fetoprotein (AFP) could be easily immobilized on the APBA coated beads through sugar-boronic interaction. After an off-line incubation, the mixture of the analyte AFP with horseradish peroxidase-labeled AFP antibody (HRP-anti-AFP) was injected into the reactor. This led the trapping of free HRP-anti-AFP by the surface coated AFP on glass beads. The trapped HRP-anti-AFP was detected by chemiluminescence due to its sensitizing effect on the reaction of luminol and hydrogen peroxide. Under optimal conditions, the chemiluminescent signal was proportional to AFP concentration in the range of 10-100 ng mL−1. The whole assay process including regeneration of the reactor could be completed within 31 min. The proposed system showed acceptable detection and fabrication reproducibility, and the results obtained with the present method were in acceptable agreement with those from parallel single-analyte test of practical clinical sera. The described method enabled a low-cost, time saving and was potential to detect the serum AFP level in clinical diagnosis.  相似文献   

15.
The determination of the amino acids proline, histidine, tyrosine, arginine, phenylalanine and tryptophan using flow injection analysis (FIA) with chemiluminescence detection is described. Proline was the only amino acid to exhibit chemiluminescence with the tris(2,2-bipyridyl)ruthenium(III) reaction at pH 10. While, histidine was found to selectively enhance the reaction of luminol with Mn(II) salts in a basic medium. Acidic potassium permanganate chemiluminescence was able to selectively determine tyrosine at pH 6.75. Low pressure separations using a C18 guard column allowed the simultaneous determination of tyrosine and tryptophan or phenylalanine and tryptophan with acidic potassium permanganate and copper(II)-amino acid-hydrogen peroxide chemiluminescence, respectively. Precision for each method was less than 3.9% (R.S.D.) for five replicates of a standard (1×10−5 M) and the detection limits ranged between 4×10−9 and 7×10−6 M. Preliminary investigations revealed that the methodology developed was able to selectively determine the individual amino acids in an equimolar mixture of the 20 naturally occurring amino acids.  相似文献   

16.
Zampronio CG  Rohwedder JJ  Poppi RJ 《Talanta》2000,51(6):1163-1169
In this work a stainless steel electrode was prepared, characterised and used as indicator electrode in a potentiometric flow cell. Due to its versatility, it was possible to study different electrode geometries and flow cell arrangements. After optimising the system, mixtures of succinic and oxalic acids were determined by titration. Partial least squares (PLS) regression as multivariate calibration tool was applied for data treatment. The predicted results obtained in a test set showed a relative error of 4.3% for succinic acid and 5.5% for oxalic acid.  相似文献   

17.
A flow injection analysis (FIA)-background correction method comprising two solid-phase reactors and spectrophotometry for determination of ascorbic acid (AsA) is proposed. A polyethylene mini-column filled with solid iodine (30% m/m suspended on silica gel beads), reactor 1, and other column filled only with silica gel, reactor 2, which are then incorporated in a flow system so that solid iodine reagent in reactor 1 is affected as the sample passes through the column. The sample blank is produced by the oxidation of the AsA by iodine to form dehydroascorbic acid, insensitive to ultraviolet at 267 nm. AsA in samples is determined after injected in reactor 2; the difference in two analytical signal observed is related to amount of AsA. The linear range of the system is up to 50 μg ml−1 with a detection limit of 0.08 μg ml−1, R.S.D. of better than 1.0% and sampling frequency of 110 sample h−1. The method is successfully applied to the determination of AsA in pharmaceuticals and foods.  相似文献   

18.
A novel bioelectrochemical method for the direct determination of D(−) L(+) lactic acid and of L(−) malic acid in wines is presented. Multienzymatic biosensors were realized for the selective determination of the three analytes: D(−) and L(+) lactic acid were measured by a trienzymatic biosensor based on the catalytic activities of the enzymes L(+) lactate oxidase (LOD), D(−) lactate dehydrogenase (D-LDH) and horseradish peroxidase (HRP); L(−) malic acid was measured by a bienzymatic electrode, realized by coupling the enzymes L(−) malic dehydrogenase (L-MDH) and horseradish peroxidase (HRP). In both cases the enzymes were immobilized on an oxygen selective Clark electrode.The simultaneous determination of the two organic acids can be accomplished either in batch or in a flow injection analysis apparatus using the same biosensors as detectors. The analytical performance of the method, tested in standard aqueous solutions and on real samples of wines, showing high repeatability, short response times and reduced cost of analysis, suggest that the experimental approach here described could be followed to monitor the progress of malolactic fermentation.  相似文献   

19.
流动注射化学发光法快速测定化学需氧量   总被引:5,自引:0,他引:5  
基于酸性K2 Cr2 O7在消解水体中的有机污染物时被还原为Cr(Ⅲ ) ,而Cr(Ⅲ )可以催化Luminol H2 O2 体系产生强的化学发光 ,建立了一种测定COD的流动注射化学发光法。本方法不需要催化剂 ,不需要长的消解时间 ,可以采用较低的酸度 ,适合于在线连续检测水体COD。本方法检测COD的线性范围为 2 0~1 0 0 0 0mg L ,检出限为 1 0mg L ,对 1 0mg LCOD的 1 1次平行测定的RSD小于5 %。方法已用于地表水样COD的测定。  相似文献   

20.
Two new flow methods, flow injection analysis (FIA) and sequential injection analysis (SIA), for the spectrophotometric determination of Cu(II) in water at trace levels have been developed and optimised. Both methods are based on the reaction with oxalic acid bis(cyclohexylidene hydrazide) (cuprizone) in alkaline media. The two procedures have been developed for the final aim to compare their performances and to offer new rapid heavy metals analysis tools, avoiding the use of extraction steps. A detailed study of the physico-chemical parameters affecting the systems performances has been carried out. The reversed FIA and sandwich SIA approaches offered the best sensitivity. In both cases, an extremely good linearity has been obtained within the range 0.06-4 μg ml−1 (correlation coefficient r=0.9999), whereas the observed detection limits were 0.013 and 0.004 μg ml−1, for FIA and SIA, respectively. Furthermore, due to the great similarity of the diffusion zones in the reaction slugs, our approach offers the opportunity to compare the two methods in analogous conditions. This SIA method, besides keeping its typical reagent saving features, offered analytical performances equivalent to those of FIA. To obtain these results, an original “stop-flow like” method was successfully employed in the SIA approach. Both methods were validated by analysis of real water samples, after copper addition, and certified reference samples of fortified and waste waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号