首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A wide range of highly correlated ab initio methods has been used to predict the geometrical parameters of the linear (X (2)Pi) and H-bridged (X (2)A(1) and A (2)B(1)) Ga(2)H isomers and two isomerization transition states (X (2)A(') and A (2)A(")) connecting the three minima. Dipole moments and vibrational frequencies are also obtained. The global minimum X (2)A(1) ground state of the H-bridged GaHGa isomer is predicted to lie only 1.6 [1.9 with the zero-point vibrational energy (ZPVE) corrections] kcal mol(-1) below the A (2)B(1) state. The X (2)A(1) state lies 5.4 kcal mol(-1) below the X (2)Pi ground state of the linear GaGaH isomer at the coupled-cluster with single, double, and perturbative triple excitations [CCSD(T)] level of theory with the augmented correlation-consistent polarized valence quadruple-zeta (aug-cc-pVQZ) basis set. The full triples coupled-cluster method is found to alter these CCSD(T) predictions by as much as 0.3 kcal mol(-1). The forward isomerization barriers from the linear ground state to the X (2)A(') and A (2)A(") transition states are determined to be 3.3 and 5.3 kcal mol(-1), respectively. The reverse isomerization barrier between the X (2)A(1) GaHGa structure and the X (2)Pi GaGaH structure is predicted to be 8.6 (8.2 with the ZPVE corrections) kcal mol(-1) at the aug-cc-pVQZ CCSD(T) level of theory.  相似文献   

2.
The impact of parameters in potential function for describing atomic or molecular clusters is complex due to the complicated potential energy surface. Ternary Lennard-Jones (TLJ) A(l)B(m)C(n) clusters with two-body potential are investigated to study the effect of parameters. In the potential, the size parameter (σ(AA)) of A atoms is fixed, and corresponding parameters of B and C atoms (relative to A atoms), i.e., σ(BB)/σ(AA) and σ(CC)/σ(AA) > 1.00, are used to control the atomic interaction among A, B, and C atoms in TLJ clusters. The minimum energy configurations of A(l)B(m)C(n) clusters with different species are optimized by adaptive immune optimization algorithm. Ternary cluster structures, bonds, and energies of the putative minima are studied. The results show that two different structures based on double-icosahedra are found in 30-atom TLJ clusters. Furthermore, with increasing potential size parameters of B and C atoms, A atoms tend to be more compact for the increasing numbers of A-A bonds, but the short-range attractive part in TLJ clusters becomes weaker. To lower the potential energy, B and C atoms grow around the A atoms in pursuit of a compact configuration. The results are also approved in A(l)B(m)C(n) (l + m + n = 9-55) clusters and A(l)B(m)C(n) (l = 13, m + n = 42) clusters.  相似文献   

3.
Ion mobility measurements have been used to examine the conformations present for unsolvated Ac-(AG)(7)A+H(+) and (AG)(7)A+H(+) peptides (Ac = acetyl, A = alanine, and G = glycine) over a broad temperature range (100-410 K). The results are compared to those recently reported for Ac-A(4)G(7)A(4)+H(+) and A(4)G(7)A(4)+H(+), which have the same compositions but different sequences. Ac-(AG)(7)A+H(+) shows less conformational diversity than Ac-A(4)G(7)A(4)+H(+); it is much less helical than Ac-A(4)G(7)A(4)+H(+) at the upper end of the temperature range studied, and at low temperatures, one of the two Ac-A(4)G(7)A(4)+H(+) features assigned to helical conformations is missing for Ac-(AG)(7)A+H(+). Molecular dynamics simulations suggest that the different conformational preferences are not due to differences in the stabilities of the helical states, but differences in the nonhelical states: it appears that Ac-(AG)(7)A+H(+) is more flexible and able to adopt lower energy globular conformations (compact random looking three-dimensional structures) than Ac-A(4)G(7)A(4)+H(+). The helix to globule transition that occurs for Ac-(AG)(7)A+H(+) at around 250-350 K is not a direct (two-state) process, but a creeping transition that takes place through at least one and probably several intermediates.  相似文献   

4.
Since the discovery of ozone depletion, the doublet electronic states of the ozone radical cation have received much attention in experimental and theoretical investigations, while the low-lying quartet states have not. In the present research, viable pathways to the quartet states from the lowest three triplet states of ozone, (3)A(2), (3)B(2), and (3)B(1), and excitations from the (2)A(1) and (2)B(2) states of the ozone radical cation have been studied in detail. The potential energy surfaces, structural optimizations, and vibrational frequencies for several states of ozone and its radical cation have been thoroughly investigated using the complete active space self-consistent field, unrestricted coupled cluster theory from a restricted open-shell Hartree-Fock reference including all single and double excitations (UCCSD), UCCSD method with the effects of connected triple excitations included perturbatively, and unrestricted coupled cluster including all single, double, and triple excitations with the effects of connected quadruple excitations included perturbatively. These methods used Dunning's correlation-consistent polarized core-valence basis sets, cc-pCVXZ (X = D, T, Q, and 5). The most feasible pathways (symmetry and spin allowed transitions) to the quartet states are (4)A(1)<--(3)A(2), (4)A(2)<--(3)A(2), (4)A(1)<--(3)B(2), (4)A(2)<--(3)B(1), (4)B(2)<--(3)B(1), (4)A(2)<--(1)A(1), (4)B(2)<--(1)A(1), and (4)A(1)<--(1)A(1) with vertical ionization potentials of 12.46, 12.85, 12.82, 12.46, 12.65, 13.43, 13.93, and 14.90 eV, respectively.  相似文献   

5.
Mitzi DB 《Inorganic chemistry》2000,39(26):6107-6113
Thin sheetlike crystals of the metal-deficient perovskites (H2AEQT)M2/3I4 [M = Bi or Sb; AEQT = 5,5"'-bis-(aminoethyl)-2,2':5',2':5',2'-quaterthiophene] were formed from slowly cooled ethylene glycol/2-butanol solutions containing the bismuth(III) or antimony(III) iodide and AEQT.2HI salts. Each structure was refined in a monoclinic (C2/m) subcell, with the lattice parameters a = 39.712(13) A, b = 5.976(2) A, c = 6.043(2) A, beta = 92.238(5) degrees, and Z = 2 for M = Bi and a = 39.439(7) A, b = 5.952(1) A, c = 6.031(1) A, beta = 92.245(3) degrees, and Z = 2 for M = Sb. The trivalent metal cations locally adopt a distorted octahedral coordination, with M-I bond lengths ranging from 3.046(1) to 3.218(3) A (3.114 A average) for M = Bi and 3.012(1) to 3.153(2) A (3.073 A average) for M = Sb. The new organic-inorganic hybrids are the first members of a metal-deficient perovskite family consisting of (Mn+)2/nV(n-2)/nX4(2-) sheets, where V represents a vacancy (generally left out of the formula) and the metal cation valence, n, is greater than 2. The organic layers in the AEQT-based organic-inorganic hybrids feature edge-to-face aromatic interactions among the rigid, rodlike quaterthiophene moieties, which may help to stabilize the unusual metal-deficient layered structures.  相似文献   

6.
Metabolic inactivation of the antitumor antibiotic bleomycin is believed to be mediated exclusively via the action of bleomycin hydrolase, a cysteine proteinase that is widely distributed in nature. While the spectrum of antitumor activity exhibited by the bleomycins is believed to reflect the anatomical distribution of bleomycin hydrolase within the host, little has been done to characterize the product of the putative inactivation at a chemical or biochemical level. The present report describes the synthesis of deamidobleomycin demethyl A(2) (3) and deamido bleomycin A(2) (4), as well as the respective aglycones. These compounds were all accessible via the key intermediate N(alpha)-Boc-N(beta)-[1-amino-3(S)-(4-amino-6-carboxy-5-methylpyrimidin-2-yl)propion-3-yl]-(S)-beta-aminoalanine tert-butyl ester (16). Synthetic deamido bleomycin A(2) was shown to be identical to the product formed by treatment of bleomycin A(2) with human bleomycin hydrolase, as judged by reversed-phase HPLC analysis and (1)H NMR spectroscopy. Deamido bleomycin A(2) was found to retain significant DNA cleavage activity in DNA plasmid relaxation assays and had the same sequence selectivity of DNA cleavage as bleomycin A(2). The most significant alteration of function noted in this study was a reduction in the ability of deamido bleomycin A(2) to mediate double-strand DNA cleavage, relative to that produced by BLM A(2).  相似文献   

7.
The tunneling-split origin band of the tropolone A (1)B(2)-X (1)A(1) (pi(*)<--pi) absorption system was interrogated under ambient, bulk-gas conditions by exploiting high-resolution degenerate four-wave mixing techniques. The inherent complexity of this spectral region was alleviated by performing polarization-resolved measurements, with judicious selection of transverse characteristics for the incident and detected electromagnetic fields enabling rovibronic transitions to be discriminated according to their attendant changes in rotational angular momentum, DeltaJ. Quantitative simulation of recorded data sets showed the vibrationless level of the electronically excited state to be bifurcated by Delta(0) (A)=19.846(25) cm(-1), representing a factor of 20 increase in proton-transfer efficiency over the corresponding level of the ground electronic state. Spectroscopic parameters extracted for the 0(+) and 0(-) manifolds of A (1)B(2) tropolone yield unexpectedly large values of the inertial defect, DeltaI(0(+) ) (A)=-0.802(86) amu A(2) and DeltaI(0(-) ) (A)=-0.882(89) amu A(2), strongly suggesting that a loss of molecular planarity accompanies the pi(*)<--pi electron promotion. These results, as well as complementary information deduced for interloping hot-band resonances, are discussed in terms of the unique structural and dynamical properties exhibited by tropolone and related proton-transfer species.  相似文献   

8.
A study is made of the segregation effect of adsorbed species related to the inner structure of two bidimensional adsorbent fractals, the incipient percolation cluster (IPC) and the backbone of the IPC, and their connection with the rate-determining step of the kinetic mechanism of the monomer-dimer (MD) surface reaction on those fractals. Production, R(AB), is proportional to the concentration of A in the gas phase y(A) and to the fraction of vacant superficial sites x(E) (R(AB)=y(A)x(E)), and it is shown that adsorption of the monomer is the rate-controlling step of the reaction mechanism.  相似文献   

9.
Electronic spectra of LiNH(3) and its partially and fully deuterated analogues are reported for the first time. The spectra have been recorded in the near-infrared and are consistent with two electronic transitions in close proximity, the ?(2)E-X(2)A(1) and B(2)A(1)-X(2)A(1) systems. Vibrational structure is seen in both systems, with the Li-N-H bending vibration (ν(6)) dominant in the ?(2)E-X(2)A(1) system and the Li-N stretch (ν(3)) in the B(2)A(1)-X(2)A(1) system. The prominence of the 6(0)(1) band in the ?(2)E-X(2)A(1) spectrum is attributed to Herzberg-Teller coupling. The proximity of the B(2)A(1) state, which lies a little more than 200 cm(-1) above the ?(2)E state, is likely to be the primary contributor to this strong vibronic coupling.  相似文献   

10.
[Pd(bpy)(bdt)], 2 (bpy = 2,2'-bipyridine, bdt = 1,2-benzenedithiolate), was prepared in good yield by the reaction of bdtNa2 with [(bpy)PdCl2] in DMSO. The analogous nickel complex, 1, was prepared in a similar reaction using MeOH/CH2Cl2 and [(bpy)NiCl2.dmf]2. Both 1 (a = 7.9920(1) A, b = 11.4385(1) A, c = 16.1415(1) A, beta = 103.327(1) degrees, V = 1435.86(2) A3, Z = 4) and 2 (a = 8.1631(5) A, b = 11.4379(7) A, c = 16.2475(10) A, beta = 103.7010(10) degrees, V = 1473.84(12) A3, Z = 4) crystallize in the monoclinic space group P2(1)/c and are isostructural with their previously reported platinum analogue. In accord with the results observed for platinum but not nickel, photochemical oxidation of 2 in DMF provides the monosulfinate complex [Pd(bpy)(bdtO2)], 4, along with a minor amount of the corresponding disulfinate [Pd(bpy)(bdtO4)], 5, while chemical oxidation yields only the latter. 4 cocrystallizes with 5 in the monoclinic space group P2(1)/c (a = 8.026(3) A, b = 14.600(6) A, c = 13.371(3) A, beta = 101.80(3) degrees, V = 1533.8(9) A3, Z = 4) as does pure 5 (a = 8.5611(9) A, b = 14.4586(15) A, c = 13.3677(14) A, beta = 108.122(2) degrees, V = 1572.6(3) A3, Z = 4). Comparison of spectroscopic and electrochemical properties of the three complexes, [M(bpy)(bdt)], yields the following ordering for the energy of the HOMO: Pd < Ni < Pt. The observed reactivity patterns and the electronic data suggest that the "anomalous" reactivity of 1 be attributed to the greater relative flexibility of the coordination geometry for nickel(II) complexes rather than electronic differences such as the energies of the frontier orbitals.  相似文献   

11.
The OH stretching (nu(OH)) band of methanol observed in condensed phase has been analyzed in terms of hydrogen-bonding patterns. Quantum chemical calculations for methanol clusters have revealed that broadening of the nu(OH) envelope is reasonably reproduced by considering nearest and next-nearest neighbor interactions through hydrogen bonding. Because the hydrogen bond formed between donor (D) and acceptor (A) is cooperatively strengthened or weakened by a newly formed hydrogen bond at D or A, we have proposed the following notation for hydrogen-bonding patterns of monohydric alcohols: a(D)DAd(A)a(A), where a is the number of protons accepted by D (a(D)) or A (a(A)), and d(A) is the number of protons donated by A. The indicator of the hydrogen-bond strength, which is given by M(OH) = a(D) + d(A) - a(A), is correlated well with the nu(OH) wavenumber of the methanol molecule D participating in the a(D)DAd(A)a(A) pattern. The correlation between M(OH) and the hydrogen-bonding energy of the a(D)DAd(A)a(A) pattern has also been deduced from the calculation results for the clusters. The nu(OH) bands of methanol measured in the CCl4 solution and pure liquid have been successfully analyzed by the method proposed here.  相似文献   

12.
A series of four structurally related cis-dithiolate-ligated Fe(III) complexes, [Fe(III)(DITpy)2]Cl (1), [Fe(III)(DITIm)2]Cl (2), [Fe(III)(ADIT)2]Cl (3), and [Fe(III)(AMIT)2]Cl (4), are described. The structural characterization of 3 as well as the spectroscopic properties of 3 and 4 has been previously reported. Crystal data for 1, 2, and 4 are as follows: 1.3H2O crystallizes in the orthorhombic space group Pca2(1) with a = 19.800(4) A, b = 18.450(4) A, c = 14.800(3) A, and Z = 8. 2.(1/2)EtOH.1/2H2O crystallizes in the monoclinic space group Cc with a = 24.792(4) A, b = 14.364(3) A, c = 17.527(3) A, beta = 124.91(2) degrees, and Z = 8. 4 crystallizes in the triclinic space group P1 with a = 8.0152(6) A, b = 10.0221(8) A, c = 11.8384(10) A, alpha = 73.460(3) degrees, beta = 71.451(5) degrees, gamma = 72.856(4) degrees, and Z = 2. Complexes 1-4 share a common S2N4 coordination environment that consists of two cis-thiolates, two trans-imines, and two cis-terminal nitrogen donors: Nterm = pyridine (1), imidazole (2), and primary amine (3 and 4). The crystallographically determined mean Fe-S bond distances in 1-4 range from 2.196 to 2.232 A and are characteristic of low-spin Fe(III)-thiolate complexes. The low-spin S = 1/2 ground state was confirmed by both EPR and magnetic susceptibility measurements. The electronic spectra of these complexes are characterized by broad absorption bands centered near approximately 700 nm that are consistent with ligand-to-metal charge-transfer (CT) bands. The complexes were further characterized by cyclic voltammetry measurements, and all possess highly negative Fe(III)/Fe(II) redox couples ( approximately -1 V vs SCE, saturated calomel electrode) indicating that alkyl thiolate donors are effective at stabilizing Fe(III) centers. Both the redox couple and the 700 nm band in the visible spectra show solvent-dependent shifts that are dependent upon the H-bonding ability of the solvent. The implications of these results with respect to the active site of the iron-containing nitrile hydratases are also discussed.  相似文献   

13.
The pulsed-field-ionization zero-kinetic-energy (PFI-ZEKE) photoelectron spectrum of jet-cooled O3 has been recorded in the range 101,000-104,000 cm(-1). The origins of the X 1A1-->X+ 2A1 and X 1A1-->A+ 2B2 transitions could be determined from the rotational structure of the bands, the photoionization selection rules, the photoionization efficiency curve, and comparison with ab initio calculations. The first adiabatic ionization energy of O3 was measured to be 101,020.5(5) cm(-1) [12.524 95(6) eV] and the energy difference between the X+ 2A1 (0,0,0) and A+ 2B2 (0,0,0) states was determined to be DeltaT0=1089.7(4) cm(-1). Whereas the X-->X+ band consists of an intense and regular progression in the bending (nu2) mode observed up to v2+=4, only the origin of the X-->A+ band was observed. The analysis of the rotational structure in each band led to the derivation of the r0 structure of O3+ in the X+ [C2v,r0=1.25(2) A,alpha0=131.5(9) degrees ] and A+[C2v,r0=1.37(5) A,alpha0=111.3(38) degrees ] states. The appearance of the spectrum, which is regular up to 102,300 cm(-1), changes abruptly at approximately 102,500 cm(-1), a position above which the spectral density increases markedly and the rotational structure of the bands collapses. On the basis of ab initio calculations, this behavior is attributed to the onset of large-amplitude motions spreading through several local minima all the way to large internuclear distances. The ab initio calculations are consistent with earlier results in predicting a seam of conical intersections between the X+ and A+ states approximately 2600 cm(-1) above the cationic ground state and demonstrate the existence of potential minima at large internuclear distances that are connected to the main minima of the X+ and A+ states through low-lying barriers.  相似文献   

14.
The relative stabilities of all low-lying conformations of FeO(4)(0/-) stoichiometry were investigated at the quantum mechanical BPW91, CASPT2, and RCCSD(T) levels of theory. For both the anionic and neutral clusters, the determination of the most stable structure appears to be a demanding task. The density functional theory and wave function second-order perturbation theory computational techniques place the doublet state of the tetrahedron-like O(4)Fe(-) conformation substantially lower, up to 0.81 eV, than the doublet state of η(2)-(O(2))FeO(2)(-). The coupled-cluster method reduces the energy difference to less than 0.01 eV. This equal stability of the ground states of O(4)Fe(-) and η(2)-(O(2))FeO(2)(-) leads to the assignment of the experimental photoelectron spectrum of FeO(4)(-). The lowest binding energy band (X band) is ascribed to the (2)A(1) → (1)A(1) ionization of η(2)-(O(2))FeO(2)(-), while the higher energy band (A band) mainly corresponds to the (2)E → (1)A(1) transition between the O(4)Fe(0/-) conformations. For a specific conformation, CASPT2 calculates the best electron detachment energies. The highest energy peak in this band with the weakest intensity could be ascribed to the (2)A(2) → (3)A(2) transition between the η(2)-(O(2))FeO(2) conformations. The two progressions are the result of ionizations from the anti-bonding orbitals of predominant iron 3d. For a specific conformation, CASPT2 calculates the best electron detachment energies. A BPW91 Franck-Condon simulation of the observed vibrational progressions further confirms the proposed assignments.  相似文献   

15.
In recent years, the transition-metal catalyzed three-component coupling of an aldehyde, an alkyne and an amine, commonly called A(3)-coupling, has been established as a convenient and general approach towards propargylamines. Furthermore, the A(3)-coupling has found a broad application as a key step in the construction of various nitrogen-containing heterocycles, biologically active compounds and natural products. Several interesting modifications of the A(3)-coupling as well as different tandem reactions involving A(3)-coupling have been developed. This tutorial review aims to highlight the current achievements in the field of A(3)-couplings and related transformations.  相似文献   

16.
The crystal structures of several dinuclear complexes of manganese are reported, and the decomposition and analysis of the nanostructured products derived from them are presented. 1,4,7,10-Tetraazacyclododecane (cyclen) forms dinuclear complexes 1-4 containing doubly oxo-bridged or oxo-acetato bridging ligands depending on the manganese salt used for the reaction. Doubly oxo-bridged 1 crystallizes in the orthorhombic space group Pnma, a = 22.3850(14) A, b = 9.1934(5) A, c = 13.2424(10) A, V = 2725.2(3) A(3). 2, containing [Mn(SCN)5](3-) conteranions, crystallizes in monoclinic space group I2/a with a = 18.2699(10) A, b = 11.2384(6) A, c = 18.6432(9) A, alpha = 90.00 degrees, beta = 114.510(6) degrees, gamma = 90.00 degrees, V = 3483.0(3) A(3). Oxo-acetato-bridged 3 crystallizes in orthorhombic space group Pca21, a = 13.9322(11) A, b = 16.2332(13) A, c = 14.6794(8) A, V = 3320.0(4) A(3). Compound 4 consists of a templated quasi-one-dimensional manganese oxalate crystallized in the triclinic space group P1, a = 9.5442(11) A, b = 10.3758(10) A, c = 21.851(2) A, alpha = 83.720(12) degrees, beta = 80.106(13) degrees, gamma = 85.457(13) degrees, V = 2114.9(4) A(3). Compounds 1, 3, and 4 decompose to nanostructured oxide materials, which may be isolated in bulk as lamellar-structured particles or microspheres or deposited on substrates.  相似文献   

17.
The amyloid beta (A beta) peptide of Alzheimer's disease binds copper(II), and the peptide-bound metal may be a source of reactive oxygen species and neurotoxicity. To circumvent peptide aggregation and reduce redox activity, there is growing interest in using metal chelates as drug therapeutics for AD, whose design requires accurate data on the affinity of A beta peptides for copper(II). Reports on Cu2+ binding to A beta range from approximately 10(5) to approximately 10(9); these values' being obtained for different peptide lengths (1-16, 1-28, 1-40, 1-42) at varying pH. Herein, we report that Cu2+'s binding to A beta(1-40) at 37 degrees C occurs in a 1:1 stoichiometry with a pH-dependent binding constant: 1.1 (+/-0.2) x 10 (9) M (-1) and 2.4 (+/-0.2) x 10 (9) M(-1) at pH 7.2 and 7.4, respectively. Under identical conditions, A beta(1-16) reveals a comparable binding constant, confirming that this portion of the peptide is the binding region. Several previously reported values can be reconciled with the current measurement by careful consideration of thermodynamics associated with the presence of competing ligands used to solubilize copper.  相似文献   

18.
Five new antimony(III) complexes with the heterocyclic thiones 2-mercapto-benzimidazole (MBZIM), 5-ethoxy-2-mercapto-benzimidazole (EtMBZIM), and 2-mercapto-thiazolidine (MTZD) of formulas {[SbCl(2)(MBZIM)4]+.Cl-.2H(2)O. (CH(3)OH)} (1), {[SbCl(2)(MBZIM)4]+.Cl-.3H(2)O.(CH3CN)} (2), [SbCl(3)(MBZIM)2] (3), [SbCl(3)(EtMBZIM)(2)] (4), and [SbCl(3)(MTZD)2] (5) have been synthesized and characterized by elemental analysis, FT-IR, far-FT-IR, differential thermal analysis-thermogravimetry, X-ray diffraction, and conductivity measurements. Complex {[SbCl2(tHPMT)(2)]+Cl-}, (tHPMT = 2-mercapto-3,4,5,6-tetrahydro-pyrimidine), already known, was also prepared, and its X-ray crystal structure was solved. It is shown that the complex is better described as {[SbCl3(tHPMT)(2)]} (6). Crystal structures of all other complexes (1-5) have also been determined by X-ray diffraction at ambient conditions. The crystal structure of the hydrated ligand, EtMBZIM.H2O is also reported. Compound [C(28)H(24)Cl(2)N(8)S(4)Sb.2H(2)O.Cl.(CH(3)OH)] (1) crystallizes in space group P2(1), with a = 7.7398(8) A, b = 16.724(3) A, c = 13.717(2) A, beta = 98.632(11) degrees, and Z = 2. Complex [C(28)H(24)Cl(2)N(8)S(4)S(b).Cl.3H(2)O.(CH(3)CN)] (2) corresponds to space group P2(1), with a = 7.8216(8) A, b = 16.7426(17) A, c = 13.9375(16) A, beta = 99.218(10) degrees , and Z = 2. In both 1 and 2 complexes, four sulfur atoms from thione ligands and two chloride ions form an octahedral (Oh) cationic [SbS(4)Cl(2)]+ complex ion, where chlorides lie at axial positions. A third chloride counteranion neutralizes it. Complexes 1 and 2 are the first examples of antimony(III) compounds with positively charged Oh geometries. Compound [C(14)H(12)Cl(3)N(4)S(2)S(b)] (3) crystallizes in space group P, with a = 7.3034(5) A, b = 11.2277(7) A, c = 12.0172(8) A, alpha = 76.772(5) degrees, beta = 77.101(6) degrees, gamma = 87.450(5) degrees, and Z = 2. Complex [C(18)H(20)Cl(3)N(4)O(2)S(2)S(b)] (4) crystallizes in space group P1, with a = 8.6682(6) A, b = 10.6005(7) A, c = 13.0177(9) A, alpha = 84.181(6) degrees, beta = 79.358(6) degrees, gamma = 84.882(6) degrees, and Z = 2, while complex [C(6)H(10)Cl(3)N(2)S(4)S(b)] (5) in space group P2(1)/c shows a = 8.3659(10) A, b = 14.8323(19) A, c = 12.0218(13) A, beta = 99.660(12) degrees, and Z = 4 and complex [C(8)H(16)Cl(3)N(4)S(2)S(b)] (6) in space group P1 shows a = 7.4975(6) A, b = 10.3220(7) A, c = 12.1094(11) A, alpha = 71.411(7) degrees, beta = 84.244(7) degrees, gamma = 73.588(6) degrees, and Z = 2. Crystals of complexes 3-6 grown from acetonitrile solutions adopt a square-pyramidal (SP) geometry, with two sulfur atoms from thione ligands and three chloride anions around Sb(III). The equatorial plane is formed by two sulfur and two chloride atoms in complexes 3-5, in a cis-S, cis-Cl arrangement in 3 and 5 and a trans-S, trans-Cl arrangement in 4. Finally, in the case of 6, the equatorial plane is formed by three chloride ions and one sulfur from the thione ligand while the second sulfur atom takes an axial position leading to a unique SP conformation. The complexes showed a moderate cytostatic activity against tumor cell lines.  相似文献   

19.
The G6 group-theoretical high-barrier formalism developed previously for internally rotating and inverting CH3NHD is used to interpret the abnormal torsional splittings in the S1 state of acetaldehyde for levels 14(0-)15(0), 14(0-)15(1), and 14(0-)15(2), where 14(0-) denotes the upper inversion tunneling component of the aldehyde hydrogen and 15 denotes the methyl torsional vibration. This formalism, derived using an extended permutation-inversion group G6m, treats simultaneously methyl torsional tunneling, aldehyde-hydrogen inversion tunneling and overall rotation. Fits to the rotational states of the four pairs of inversion-torsion vibrational levels (14(0+)15(0A,E), 14(0-)15(0A,E)), (14(0+)15(1A,E), 14(0-)15(1A,E)), (14(0+)15(2A,E), 14(0-)15(2A,E)), and (14(0+)15(3A,E), 14(0-)15(3A,E)) are performed, giving root-mean-square deviations of 0.003, 0.004, 0.004, and 0.004 cm(-1), respectively, which are nearly equal to the experimental uncertainty of 0.003 cm(-1). For torsional levels lying near the top of the torsional barrier, this theoretical model, after including higher-order terms, provides satisfactory fits to the experimental data. The partially anomalous K-doublet structure of the S1 state, which deviates from that in a simple torsion-rotation molecule, is fitted using this formalism and is shown to arise from coupling of torsion and rotation motion with the aldehyde-hydrogen inversion.  相似文献   

20.
The structure of tert-butylphosphonic acid in the solid, in solution, and in the gas phase was studied by single-crystal X-ray diffraction, (1)H and (31)P NMR spectroscopic studies in solution, solid-state (31)P NMR spectroscopy, and electrospray ionization mass spectrometry. In addition, density functional theory (DFT) calculations at the B3LYP/6-31G*, B3LYP/6-31+G*, and B3LYP/6-311+G* level of theory for a large number of H-bonded aggregates of the type (tBuPO(3)H(2))(n) (C(n), P(n); n=1-7) support the experimental work. Crystallization of tBuPO(3)H(2) from polar solvents such as CH(3)CN or THF gives the H-bonded one-dimensional polymer 2, whereas crystallization from the less polar solvent CDCl(3) favors the formation of the H-bonded cluster (tBuPO(3)H(2))(6).CDCl(3) (1). In CDCl(3) the hexamer (tBuPO(3)H(2))(6) (C(6)) is replaced by smaller aggregates down to the monomer with decreasing concentration. DFT calculations and natural bond orbital (NBO) analyses for the clusters C(1)-C(7) and the linear arrays P(1)-P(7) reveal the hexamer C(6) to be the energetically favored structure resulting from cooperative strengthening of the hydrogen bonds in the H-bonded framework. However, the average hydrogen bond strengths calculated for C(6) and P(2) do not differ significantly (42-43 kJ mol(-1)). The average distances r(O.O), r(Obond;H), r(Pdbond;O), and r(Pbond;OH) in C(1)-C(7) and P(1)-P(7) are closely related to the hydrogen bond strength. Electrospray ionization mass spectrometry shows the presence of different anionic species of the type [(tBuPO(3)H(2))(n)-H](-) (A(1)-A(7), n=1-7) depending on the instrumental conditions. DFT calculations at the B3LYP/6-31G* level of theory were carried out for A(1)-A(6). We suggest the dimer [(tBuPO(3)H(2))(2)-H](-) (A(2)) and the trimer [(tBuPO(3)H(2))(3)-H](-) (A(3)) are the energetically favored anionic structures. A hydrogen bond energy of approximately 83 kJ mol(-1) was calculated for A(2). Electrospray ionization mass spectrometry is not suitable to study the assembling process of neutral H-bonded tert-butylphosphonic acid since the removal of a proton from the neutral aggregates has a large influence on the hydrogen bond strength and the cluster structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号