首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The sensitizers [Ru(bpy)2(deeb)](PF6)2 (1), [Ru(bpy)2(bpy)-(E-Ph)-Ad](PF6)2 (2), and [Ru(bpy)2(bpy)-(E-Ph)2-Ad](PF6)2 (3), where deeb is 4,4'-(COOCH2CH3)2-2,2'-bipyridine, E-Ph is phenylethynyl, and Ad are tripod shaped bpy ligands based on 1,3,5,7-tetraphenyladamantane, were anchored to mesoporous nanocrystalline (anatase) TiO2 thin films and studied in regenerative solar cells with 0.1 M LiI/0.005 M I2 dichloromethane electrolyte. Over three decades of 488 nm irradiance, the open circuit photovoltage increased markedly with the distance between the Ru center and the surface binding groups, 1 (7 A) < 2 (18 A) < 3 (24 A). The diode equation accurately models the irradiance dependent data and indicates that the TiO2(e-) --> I3- (and/or I2) charge recombination rate constants were decreased by a factor of 20 for 2/TiO2 and 280 for 3/TiO2 relative to 1/TiO2. The results suggest that control of the sensitizer-TiO2 orientation is important for efficient power optimization.  相似文献   

2.
Zigler DF  Wang J  Brewer KJ 《Inorganic chemistry》2008,47(23):11342-11350
Bimetallic complexes of the form [(bpy)(2)Ru(BL)RhCl(2)(phen)](PF(6))(3), where bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and BL = 2,3-bis(2-pyridyl)pyrazine (dpp) or 2,2'-bipyrimidine (bpm), were synthesized, characterized, and compared to the [{(bpy)(2)Ru(BL)}(2)RhCl(2)](PF(6))(5) trimetallic analogues. The new complexes were synthesized via the building block method, exploiting the known coordination chemistry of Rh(III) polyazine complexes. In contrast to [{(bpy)(2)Ru(dpp)}(2)RhCl(2)](PF(6))(5) and [{(bpy)(2)Ru(bpm)}(2)RhCl(2)](PF(6))(5), [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) and [(bpy)(2)Ru(bpm)RhCl(2)(phen)](PF(6))(3) have a single visible light absorber subunit coupled to the cis-Rh(III)Cl(2) moiety, an unexplored molecular architecture. The electrochemistry of [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) showed a reversible oxidation at 1.61 V (vs Ag/AgCl) (Ru(III/II)), quasi-reversible reductions at -0.39 V, -0.74, and -0.98 V. The first two reductive couples corresponded to two electrons, consistent with Rh reduction. The electrochemistry of [(bpy)(2)Ru(bpm)RhCl(2)(phen)](PF(6))(3) exhibited a reversible oxidation at 1.76 V (Ru(III/II)). A reversible reduction at -0.14 V (bpm(0/-)), and quasi-reversible reductions at -0.77 and -0.91 V each corresponded to a one electron process, bpm(0/-), Rh(III/II), and Rh(II/I). The dpp bridged bimetallic and trimetallic display Ru(dpi)-->dpp(pi*) metal-to-ligand charge transfer (MLCT) transitions at 509 nm (14,700 M(-1) cm(-1)) and 518 nm (26,100 M(-1) cm(-1)), respectively. The bpm bridged bimetallic and trimetallic display Ru(dpi)-->bpm(pi*) charge transfer (CT) transitions at 581 nm (4,000 M(-1) cm(-1)) and 594 nm (9,900 M(-1) cm(-1)), respectively. The heteronuclear complexes [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) and [{(bpy)(2)Ru(dpp)}(2)RhCl(2)](PF(6))(5) had (3)MLCT emissions that are Ru(dpi)-->dpp(pi*) CT in nature but were red-shifted and lower intensity than [(bpy)(2)Ru(dpp)Ru(bpy)(2)](PF(6))(4). The lifetimes of the (3)MLCT state of [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) at room temperature (30 ns) was shorter than [(bpy)(2)Ru(dpp)Ru(bpy)(2)](PF(6))(4), consistent with favorable electron transfer to Rh(III) to generate a metal-to-metal charge-transfer ((3)MMCT) state. The reported synthetic methods provide means to a new molecular architecture coupling a single Ru light absorber to the Rh(III) center while retaining the interesting cis-Rh(III)Cl(2) moiety.  相似文献   

3.
A new I(-)/(SeCN)(2) redox mediator has favorable properties for dye-sensitized solar cells (DSCs) such as less visible light absorption, higher ionic conductivity, and downward shift of redox potential than I(-)/I(3)(-). It was then applied for DSCs towards increasing energy conversion efficiency, giving a new potential for improving performance.  相似文献   

4.
The one-electron reduction of triiodide (I(3)(-)) by a reduced ruthenium polypyridyl compound was studied in an acetonitrile solution with the flash-quench technique. Reductive quenching of the metal-to-ligand charge-transfer excited state of [Ru(II)(deeb)(3)](2+) by iodide generated the reduced ruthenium compound [Ru(II)(deeb(-))(deeb)(2)](+) and diiodide (I(2)(?-)). The subsequent reaction of [Ru(II)(deeb(-))(deeb)(2)](+) with I(3)(-) indicated that I(2)(?-) was a product that appeared with a second-order rate constant of (5.1 ± 0.2) × 10(9) M(-1) s(-1). After correction for diffusion and some assumptions, Marcus theory predicted a formal potential of -0.58 V (vs SCE) for the one-electron reduction of I(3)(-). The relevance of this reaction to solar energy conversion is discussed.  相似文献   

5.
The compounds Ru(bpy) 2(BTL)(PF 6) 2 and Ru(deeb) 2(BTL)(PF 6) 2, where bpy is 2,2'-bipyridine, deeb is 4,4'-(C 2H 5CO 2) 2-bpy, and BTL is 9'-[4,5-bis(cyanoethylthio)]-1,3-dithiol-2-ylidene]-4',5'-diazafluorene, were found to have very high extinction coefficients in the visible region. In an acetonitrile solution, the extinction of Ru(deeb) 2(BTL)(PF 6) 2 was = 44 000 +/- 1000 M (-1) cm (-1) at lambda = 470 nm. Two quasi-reversible oxidation waves, E 1/2 = +0.88 and +1.16 V, and an irreversible reduction, E pr = -1.6 V, were observed versus ferrocene (Fc (+/0)). At -40 degrees C, a state was observed with spectroscopic properties characteristic of a metal-to-ligand charge-transfer excited state, tau = 25 ns. This same compound was found to photoinject electrons into TiO 2 with a quantum yield Phi = 0.3 +/- 0.2 for 532.5 or 417 nm light excitation in a 0.1 M LiClO 4/acetonitrile electrolyte. In regenerative solar cells, a sustained photocurrent was observed with a maximum incident photon-to-current efficiency of 0.4. The photocurrent action and absorptance spectra were in good agreement, consistent with injection from a single excited state.  相似文献   

6.
The metal-to-ligand charge-transfer (MLCT) excited states of Ru(bpy)(2)(deeb)(PF(6))(2), where bpy is 2,2-bipyridine and deeb is 4,4'-(CO(2)CH(2)CH(3))(2)-2,2'-bipyridine, in dichloromethane were found to be efficiently quenched by iodide at room temperature. The ionic strength dependence of the UV-visible absorption spectra gave evidence for ion pairing. Iodide was found to quench the excited states by static and dynamic mechanisms. Stern-Volmer and Benesi-Hildebrand analysis of the spectral data provided a self-consistent estimate of the iodide-Ru(bpy)(2)(deeb)(2+) adduct in dichloromethane, K = 59 700 M(-1). Transient absorption studies clearly demonstrated an electron-transfer quenching mechanism with transient formation of I(2)(*)(-) in high yield, phi = 0.25 for 355 or 532 nm excitation. For Ru(bpy)(2)(deeb)(PF(6))(2) in acetonitrile, similar behavior could be observed at higher iodide concentrations than that required in dichloromethane. The parent Ru(bpy)(3)(2+) compound also ion pairs with iodide in CH(2)Cl(2), and light excitation gave a higher I(2)(*)(-) yield, phi = 0.50. X-ray crystallographic, IR, and Raman data gave evidence for interactions between iodide and the coordinated deeb ligand in the solid state.  相似文献   

7.
Liu F  Meyer GJ 《Inorganic chemistry》2005,44(25):9305-9313
The ruthenium polypyridyl compounds, Ru(dpp)2(deeb)(PF6)2 (Ru-deeb) and cis-Ru(dpp)2(eina)2(PF6)2 (Ru-eina), where dpp is 4,7-diphenyl-1,10-phenanthroline, deeb is 4,4'-diethyl ester-2,2'-bipyridine, and eina is 4-ethyl ester pyridine, have been prepared and characterized to sensitize nanocrystalline TiO2 (anatase) thin films. In neat acetonitrile at room temperature, Ru-deeb was emissive with lambdaem=675 nm, tau=780 ns, and emission quantum yield phiem=0.067, whereas Ru-eina was nonemissive with tau<10 ns. The short lifetime and observed photochemistry for Ru-eina are consistent with the presence of low-lying ligand-field (LF) excited states. The metal-to-ligand charge transfer (MLCT) excited states of Ru-deeb were found to be localized on the surface-bound deeb ligand, and on the remote dpp ligand for Ru-eina. Interfacial proton concentration was employed to tune the relative sensitizer-semiconductor energetics. Injection quantum yields, phiinj, varied from approximately 0.2 at pH=5 to approximately 1 at pH=1, with a slope of approximately 0.15/pH for both compounds. At pH=12, long-lived excited states were observed with phiinj<0.05. At pH相似文献   

8.
The oxidation of iodide to diiodide, I(2)˙(-), by the metal-to-ligand charge-transfer (MLCT) excited state of [Ru(deeb)(3)](2+), where deeb is 4,4'-(CO(2)CH(2)CH(3))(2)-2,2'-bipyridine, was quantified in acetonitrile and dichloromethane solution at room temperature. The redox and excited state properties of [Ru(deeb)(3)](2+) were similar in the two solvents; however, the mechanisms for excited state quenching by iodide were found to differ significantly. In acetonitrile, reaction of [Ru(deeb)(3)](2+*) and iodide was dynamic (lifetime quenching) with kinetics that followed the Stern-Volmer model (K(D) = 1.0 ± 0.01 × 10(5) M(-1), k(q) = 4.8 × 10(10) M(-1) s(-1)). Excited state reactivity was observed to be the result of reductive quenching that yielded the reduced ruthenium compound, [Ru(deeb(-))(deeb)(2)](+), and the iodine atom, I˙. In dichloromethane, excited state quenching was primarily static (photoluminescence amplitude quenching) and [Ru(deeb(-))(deeb)(2)](+) formed within 10 ns, consistent with the formation of ion pairs in the ground state that react rapidly upon visible light absorption. In both solvents the appearance of I(2)˙(-) could be time resolved. In acetonitrile, the rate constant for I(2)˙(-) growth, 2.2 ± 0.2 × 10(10) M(-1) s(-1), was found to be about a factor of two slower than the formation of [Ru(deeb(-))(deeb)(2)](+), indicating it was a secondary photoproduct. The delayed appearance of I(2)˙(-) was attributed to the reaction of iodine atoms with iodide. In dichloromethane, the growth of I(2)˙(-), 1.3 ± 0.4 × 10(10) M(-1) s(-1), was similar to that in acetonitrile, yet resulted from iodine atoms formed within the laser pulse. These results are discussed within the context of solar energy conversion by dye-sensitized solar cells and storage via chemical bond formation.  相似文献   

9.
The metal-to-ligand charge-transfer (MLCT) excited states of Ru(deeb)(bpy)(2)(PF(6))(2) [where bpy is 2,2-bipyridine and deeb is 4,4'-(CO(2)CH(2)CH(3))(2)-2,2'-bipyridine] in acetonitrile or dichloromethane were found to be quenched by iodide at room temperature. The ionic strength dependence of the optical spectra gave evidence for ion pairing. Iodide is found to quench the photoluminescence (PL) intensity and influence the spectral distribution of the emitted light. A static component to the time-resolved PL quenching provided further evidence for ground-state adduct. Stern-Volmer analysis of the static component provided an estimate of the iodide-Ru(deeb)(bpy)(2)(2+) adduct equilibrium constant in dichloromethane, K(sv) = 40,000 M(-)(1). Transient absorption studies clearly demonstrate that an electron-transfer quenching mechanism is operative and that I(2)(-)(*) can be photoproduced in high yield, phi = 0.25. For Ru(bpy)(3)(PF(6))(2) in acetonitrile, similar behavior could be observed at iodide concentrations >100 times that required for dichloromethane.  相似文献   

10.
The coordination compounds Ru(deeb)(NH3)4(PF6)2 and Ru(deeb)(NH2(CH2)2NH2)4(PF6)2, where deeb is 4,4'-(CO2CH2CH3)2-2,2'-bipyridine, were synthesized and attached to optically transparent nanocrystalline (anatase) TiO2 films. The compounds were found to be nonemissive in fluid acetonitrile and when attached to TiO2 with excited-state lifetimes <10 ns. Infrared measurements showed the expected isotopic substitution of the deuterated compounds on TiO2 thin films. A small 10-15 mV shift in the RuIII/II reduction potentials was measured upon deuteration. Metal-to-ligand charge-transfer (MLCT) excitation resulted in interfacial electron transfer into the TiO2 semiconductor with quantum yields that were dependent on the excitation wavelength and deuteration of the ammine ligands. The quantum yields were optimized with blue light excitation (417 nm) and deuterium substitution. In contrast, the kinetic rate constants for charge recombination were insensitive to deuteration and the excitation wavelength. Control experiments with Ru(deeb)(bpy)2(PF6)2 indicated that deuteration of the TiO2 surface alone does not affect the injection or recombination processes. A model is proposed wherein electron injection occurs in competition with vibrational relaxation and/or intersystem crossing of the excited states. Exchange of hydrogen by deuterium slows vibrational relaxation and/or intersystem crossing, resulting in higher injection yields.  相似文献   

11.
The excited states of [Ru(bpy)2(deeb)](PF6)2, where bpy is 2,2-bipyridine and deeb is 4,4'-(CO2CH2CH3)2-2,2'-bipyridine, were found to be efficiently quenched by triiodide (I3-) in acetonitrile and dichloromethane. In dichloromethane, I3- was found to quench the excited states by static and dynamic mechanisms; Stern-Volmer analysis of the time-resolved and steady-state photoluminescence data produced self-consistent estimates for the I3- + Ru(bpy)2(deeb)2+ <==> [Ru(II)(bpy)2(deeb)2+,(I3-)]+ equilibrium, K = 51,000 M(-1), and the bimolecular quenching rate constant, kq = 4.0 x 10(10) M(-1) s(-1). In acetonitrile, there was no evidence for ion pairing and a dynamic quenching rate constant of k(q) = 4.7 x 10(10) M(-1) s(-1) was calculated. Comparative studies with Ru(bpy)2(deeb)2+ anchored to mesoporous nanocrystalline TiO2 thin films also showed efficient excited-state dynamic quenching by I3- in both acetonitrile and dichloromethane, kq = 1.8 x 10(9) and 3.6 x 10(10) M(-1) s(-1), respectively. No reaction products for the excited-state quenching processes were observed by nanosecond transient absorption measurements from 350 to 800 nm under any experimental conditions. X-ray crystallographic, IR, and Raman data gave evidence for interactions between I3- and the bpy and deeb ligands in the solid state.  相似文献   

12.
Five new tetrametallic supramolecules of the motif [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) and three new trimetallic light absorbers [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) (TL = bpy = 2,2'-bipyridine or phen = 1,10-phenanthroline; M = Ru(II) or Os(II); BL = dpp = 2,3-bis(2-pyridyl)pyrazine, dpq = 2,3-bis(2-pyridyl)quinoxaline, or bpm = 2,2'-bipyrimidine) were synthesized and their redox, spectroscopic, and photophysical properties investigated. The tetrametallic complexes couple a Pt(II)-based reactive metal center to Ru and/or Os light absorbers through two different polyazine BL to provide structural diversity and interesting resultant properties. The redox potential of the M(II/III) couple is modulated by M variation, with the terminal Ru(II/III) occurring at 1.58-1.61 V and terminal Os(II/III) couples at 1.07-1.18 V versus Ag/AgCl. [{(TL)(2)M(dpp)}(2)Ru(BL)](PF(6))(6) display terminal M(dπ)-based highest occupied molecular orbitals (HOMOs) with the dpp(π*)-based lowest unoccupied molecular orbital (LUMO) energy relatively unaffected by the nature of BL. The coupling of Pt to the BL results in orbital inversion with localization of the LUMO on the remote BL in the tetrametallic complexes, providing a lowest energy charge separated (CS) state with an oxidized terminal Ru or Os and spatially separated reduced BL. The complexes [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) and [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) efficiently absorb light throughout the UV and visible regions with intense metal-to-ligand charge transfer (MLCT) transitions in the visible at about 540 nm (M = Ru) and 560 nm (M = Os) (ε ≈ 33,000-42,000 M(-1) cm(-1)) and direct excitation to the spin-forbidden (3)MLCT excited state in the Os complexes about 720 nm. All the trimetallic and tetrametallic Ru-based supramolecular systems emit from the terminal Ru(dπ)→dpp(π*) (3)MLCT state, λ(max)(em) ≈ 750 nm. The tetrametallic systems display complex excited state dynamics with quenching of the (3)MLCT emission at room temperature to populate the lowest-lying (3)CS state population of the emissive (3)MLCT state.  相似文献   

13.
The yields and dynamics for energy transfer from the metal-to-ligand charge-transfer excited states of Ru(deeb)(bpy)(2)(PF(6))(2), Ru(2+), and Os(deeb)(bpy)(2)(PF(6))(2), Os(2+), where deeb is 4,4'-(CH(3)CH(2)CO(2))(2)-2,2'-bipyridine, anchored to mesoporous nanocrystalline (anatase) TiO(2) thin films were quantified. Lateral energy transfer from Ru(2+)* to Os(2+) was observed, and the yields were measured as a function of the relative surface coverage and the external solvent environment (CH(3)CN, THF, CCl(4), and hexanes). Excited-state decay of Ru(2+)*/TiO(2) was well described by a parallel first- and second-order kinetic model, whereas Os(2+)*/TiO(2) decayed with first-order kinetics within experimental error. The first-order component was assigned to the radiative and nonradiative decay pathways (tau = 1 micros for Ru(2+)*/TiO(2) and tau = 50 ns for Os(2+)*/TiO(2)). The second-order component was attributed to intermolecular energy transfer followed by triplet-triplet annihilation. An analytical model was derived that allowed determination of the fraction of excited-states that follow the two pathways. The fraction of Ru(2+)*/TiO(2) that decayed through the second-order pathway increased with surface coverage and excitation intensity. Monte Carlo simulations were performed to estimate the Ru(2+)* --> Ru(2+) intermolecular energy transfer rate constant of (30 ns)(-1).  相似文献   

14.
We report the direct laser desorption/ionization (LDI) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOFMS) analysis of four inorganic coordination complexes: monometallic [Ir(dpp)(2)Cl(2)](PF(6)), homonuclear trimetallic ([(bpy)(2)Ru(dpp)](2)RuCl(2))- (PF(6))(4), and heteronuclear [(tpy)Ru(tpp)Ru(tpp)RhCl(3)](PF(6))(4) and ([(bpy)(2)Ru(dpp)](2)IrCl(2))(PF(6))(5) (dpp = 2,3-bis-(2'-pyridyl)pyrazine, bpy = 2,2'-bipyridine, tpy = 2,2',6',2"-terpyradine, tpp = 2,3,5,6,-tetrakis-(2'-pyridyl)pyrazine). Spectral intensities and fragmentation patterns are compared and evaluated for instrument parameters, matrix selection, and matrix-to-analyte ratio. Direct LDI and MALDI mass spectra of the monometallic complex showed the same ion peaks and differed only in the relative peak intensities. Direct LDI of the trimetallic complexes produced only low-mass fragments containing one metal at most. MALDI spectra of the trimetallic complexes exhibited little fragmentation in the high-mass region (>1500 Da) and less fragmentation in the low-mass region compared to direct LDI. Significant fragments of the molecules were detected and identified, including ligand fragments, intermediate-mass fragments such as [Ru(tpy)](+), and molecular ions with varying degrees of PF(6)(-) loss ([M - n(PF(6))](+), where n = 1-3). A correlation exists between the solution-phase electrochemistry and the observed [M - n(PF(6))](+) series of peaks for the trimetallic complexes. Proper matrix selection for MALDI analysis was vital, as was an appropriate matrix-to-analyte ratio. The results demonstrate the applicability of MALDI-TOFMS for the structural characterization of labile inorganic coordination complexes.  相似文献   

15.
The reaction of 2,9-di(pyrid-2'-yl)-1,10-phenanthroline (dpp) with [RuCl(3)·3H(2)O] or [Ru(DMSO)(4)Cl(2)] provides the reagent trans-[Ru(II)(dpp)Cl(2)] in yields of 98 and 89%, respectively. This reagent reacts with monodentate ligands L to replace the two axial chlorides, affording reasonable yields of a ruthenium(II) complex with dpp bound tetradentate in the equatorial plane. The photophysical and electrochemical properties of the tetradentate complexes are strongly influenced by the axial ligands with electron-donating character to stabilize the ruthenium(III) state, shifting the metal-to-ligand charge-transfer absorption to lower energy and decreasing the oxidation potential. When the precursor trans-[Ru(II)(dpp)Cl(2)] reacts with a bidentate (2,2'-bipyridine), tridentate (2,2';6,2'-terpyridine), or tetradentate (itself) ligand, a peripheral pyridine on dpp is displaced such that dpp binds as a tridentate. This situation is illustrated by an X-ray analysis of [Ru(dpp)(bpy)Cl](PF(6)).  相似文献   

16.
Results on the electrochemistry of I- and SCN- at gold and platinum electrodes using an electrochemical cell coupled to an electrospray mass spectrometer are reported. We demonstrate that our apparatus is capable of these very challenging electrochemical/electrospray experiments and that B(C6H5)4- is a suitable internal standard for negative-ion studies in acetonitrile. With I- at a platinum electrode, we observe well-behaved oxidation to I3-. Experiments on I- at gold electrodes are more complex, showing AuI2- as well as I3-. The AuI2- mass spectrometric ion intensity varies in a complex way throughout the applied electrochemical voltage range studied; we propose that this variation involves the adsorption of I- on the gold electrode surface. In experiments on SCN- from (C4H9)4NSCN at gold electrodes, we observe Au(SCN)2-. Finally, at platinum electrodes, we directly observe (SCN)3-, a species analogous to I3- and (CN)3- that has been previously postulated but unverified. This important finding was confirmed by the isotope pattern and demonstrates the stability of the anion.  相似文献   

17.
Overlayer thin films of vinylbipyridine (vbpy)-containing Ru and Zn complexes have been formed on top of ruthenium dye complexes adsorbed to TiO(2) by reductive electropolymerization. The goal was to create an efficient, water-stable photoelectrode or electrodes. An adsorbed-[Ru(vbpy)(2)(dcb)](PF(6))(2)/poly-[Ru(vbpy)(3)](PF(6))(2) surface composite displays excellent stability toward dissolution in water, but the added overlayer film greatly decreases incident photon-to-current conversion efficiencies (IPCE) in propylene carbonate with I(3)(-)/I(-) as the carrier couple. An ads-[Ru(vbpy)(2)(dcb)](PF(6))(2)/poly-[Zn(vbpy)(3)](PF(6))(2) composite displays no loss in IPCE compared to ads-[Ru(vbpy)(2)(dcb)](PF(6))(2) but is susceptible to film breakdown in the presence of water by solvolysis and loss of the cross-linking Zn(2+) ions. Success was attained with an ads-[Ru(vbpy)(2)(dcb)](PF(6))(2)/poly-[Ru(vbpy)(2)(dppe)](PF(6))(2) composite. In this case the electropolymerized layer is transparent in the visible. The composite electrode is stable in water, the IPCE in propylene carbonate with I(3)(-)/I(-) is comparable to the adsorbed complex, and a significant IPCE is observed in water with the quinone/hydroquinone carrier couple. The assembly [(bpy)(2)(CN)Ru(CN)Ru(vbpy)(2)(NC)Ru(CN)(bpy)(2)](PF(6))(2) ([Ru(CN)Ru(NC)Ru](PF(6))(2)) adsorbs spontaneously on TiO(2), and electropolymerization of thin layers of the assembly to give ads-[Ru(CN)Ru(NC)Ru](PF(6))(2)/poly-[Ru(CN)Ru(NC)Ru](PF(6))(2) enhances IPCE and has no deleterious effect on the IPCE/Ru.  相似文献   

18.
Just add light and air: Structurally diverse N-arylindoles can be prepared from readily prepared o-styryl anilines through visible-light photocatalysis. The reaction, which is conducted open to air, is mediated by [Ru(bpz)(3) ](PF(6) )(2) (bpz=2,2'-bipyrazine) and involves both C?N bond formation and aromatization. Using suitably substituted substrates, a 1,2-carbon shift can be also incorporated into this cascade reaction.  相似文献   

19.
Ye HY  Dai FR  Zhang LY  Chen ZN 《Inorganic chemistry》2007,46(15):6129-6135
Reaction of oxo-centered Ru(3)(III,III,III) precursor [Ru(3)O(OAc)(6)(py)(2)(CH(3)OH)](PF(6)) (1) with 1 equiv of 2,2'-azobispyridine (abpy) or 2,2'-azobis(5-chloropyrimidine) (abcp) induced the formation of stable Ru(3)(III,III,II) derivatives [Ru(3)O(OAc)(5){mu-eta(1)(N),eta(2)(N,N)-L}(py)(2)](PF(6)) (L = abpy (2), abcp (3)). As established in the structure of 3 by X-ray crystallography, 2 or 3 is derived from 1 by substitution of the axial methanol and one of the bridging acetates in the parent Ru(3)O(OAc)(6) cluster core with abpy or abcp in an mu-eta(1)(N),eta(2)(N,N) bonding mode. Reduction of 3 by hydrazine induces isolation of one-electron reduced neutral Ru(3)(III,II,II) product Ru(3)O(OAc)(5){mu-eta(1)(N),eta(2)(N,N)-abcp}(py)(2) (3a). As revealed by electrochemical and spectroscopic studies, substituting one of the bridging acetates in the parent Ru(3)O(OAc)(6) cluster core by abcp or abpy modifies dramatically the electronic and redox characteristics in the triruthenium derivatives. Relative to that for the parent compound [Ru(3)O(OAc)(6)(py)(3)](PF(6)) (E(1/2) = -0.46 V), triruthenium-based redox potential in the redox process Ru(3)O(III,III,III)/Ru(3)O(III,III,II) is significantly anodic-shifted to E(1/2) = +0.36 V for 2 and E(1/2) = +0.53 V for 3. Furthermore, the anodic shifts of redox potentials are progressively enhanced with a decrease of the formal oxidation states in the triruthenium cluster cores. As a consequence of remarkable positive shifts for redox potentials, the low-valence Ru(3)(III,III,II) and Ru(3)(III,II,II) species are stabilized and accessible.  相似文献   

20.
Swavey S  Brewer KJ 《Inorganic chemistry》2002,41(24):6196-6198
The mixed-metal supramolecular complex, [[(bpy)(2)Ru(dpp)](2)RhCl(2)](PF(6))(5) (bpy = 2,2'-bipyridine and dpp = 2,3-bis(2-pyridyl)pyrazine) coupling two ruthenium light absorbers (LAs) to a central rhodium, has been shown to photocleave DNA. This system possesses a lowest lying metal to metal charge transfer (MMCT) excited state in contrast to the metal to ligand charge transfer states (MLCT) of the bpm and Ir analogues. The systems with an MLCT excited state do not photocleavage DNA. [[(bpy)(2)Ru(dpp)](2)RhCl(2)](PF(6))(5) is the first supramolecular system shown to cleave DNA. It functions through an excited state previously unexplored for this reactivity, a Ru --> Rh MMCT excited state. This system functions when irradiated with low energy visible light with or without molecular oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号