首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The present work reports the critical comparison about the employment of three different supporting electrolytes (0.1 mol L−1 HClO4, 0.01 mol L−1 EDTA-Na2 + 0.06 mol L−1 NaCl + 2.0 mol L−1 HClO4 and 0.1 mol L−1 KSCN + 0.001 mol L−1 HClO4) and their instrumental and chemical optimisation for the simultaneous voltammetric determination of total mercury(II) and copper(II) in sediments and sea water at gold electrode, especially discussing the reciprocal interference problems.  相似文献   

2.
The voltammetric determination of synthetic antioxidant 2,6‐di‐tert‐butyl‐4‐methylphenole (BHT) was studied using linear‐sweep voltammetry (LSV) and cyclic voltammetry (CV) with a gold electrode and performed in isopropanol media containing either 0.1 mol L?1 H2SO4 or 0.1 mol L?1 LiClO4 as supporting electrolyte. The results obtained have revealed that the most reliable detection was acquired in acidic media (isopropanol–H2SO4) whereas the use of isopropanol? LiClO4 solution exhibited poorer reproducibility due to possible passivation of the electrode. Real samples of biodiesel mixture were analyzed without any special sample treatment or separation and results were compared with those obtained by FTIR‐spectroscopy.  相似文献   

3.
A new electroactive label has been used to monitor immunoassays in the determination of human serum albumin (HSA) using glassy-carbon electrodes as supports for the immunological reactions. The label was a gold(I) complex, sodium aurothiomalate, which was bound to rabbit IgG anti-human serum albumin (anti-HSA-Au). The HSA was adsorbed on the electrode surface and the immunological reaction with gold-labelled anti-HSA was then performed for one hour by non-competitive or competitive procedures. The gold(I) bound to the anti-HSA was electrodeposited in 0.1 mol L−1 HCl at −1.00 V for 5 min then oxidised in 0.1 mol L−1 H2SO4 solution at +1.40 V for 1 min. Silver electrodeposition at −0.14 V for 1 min followed by anodic stripping voltammetry were then performed in aqueous 1.0 mol L−1 NH3–2.0×10−4 mol L−1 AgNO3. For both non-competitive and competitive formats, calibration plots in the ranges 5.0×10−10 to 1.0×10−8 mol L−1 and 1.0×10−10 to 1.0×10−9 mol L−1 HSA, respectively, with estimated detection limits of 1.5×10−10 mol L−1 (10 ng mL−1) and 1.0×10−10 mol L−1 (7 ng mL−1), respectively, were obtained. Levels of HSA in two healthy volunteer urine samples were also evaluated, using both immunoassay formats.  相似文献   

4.
Summary A sensitive ion-exclusion chromatographic method has been developed for determination of oxalate, thiosulfate, and thiocyanate. The method is based on separation of these anions on a polymethacrylate-based, weakly acidic cation-exchange resin (TSKgel OApak-A) and detection by means of a glassy carbon (GC) electrode electrochemically modified with polyvinylpyridine (PVP), palladium, and iridium oxide (PVP/Pd/IrO2). The electrochemical behavior of oxalate, thiosulfate, and thiocyanate at this chemically modified electrode (CME) have been investigated by cyclic voltammetry. The results indicated that electrocatalytic oxidation of these anions by the electrode was efficient and that the sensitivity, stability, and lifetime of the electrode were relatively high. Combined with ion-exclusion chromatography the PVP/Pd/IrO2 electrode was used as the working electrode for amperometric detection of these anions. All linear ranges were over two orders of magnitude and detection limits, defined asS/N=3, were 9.0×10−7 mol L−1 for oxalate, 6.7×10−7 mol L−1 for thiosulfate, and 5.6×10−7 mol L−1 for thiocyanate. Correlation coefficients were all>0.998. Coupled with microdialysis sampling the method has been successfully applied to the determination of oxalate, thiosulfate, and thiocyanate in urine.  相似文献   

5.
The adsorption and faradaic processes of formylferrocene thiosemicarbazone (TFF) on gold electrode in 0.1 mol L−1 NaClO4 acetonitrile solution were monitored by surface-enhanced Raman scattering (SERS) and ultraviolet-visible (UV-VIS) techniques. SERS data indicate that TFF adsorbs through the iminic N(2′) and S atoms on the gold electrode. The reduction product formed on the gold surface was aminomethylferrocene, whose experimental spectrum was supported by density functional theory calculations. In solution, thiourea was detected by the UV-VIS technique. Although there was an oxidation wave in the TFF cyclic voltammogram, no spectral changes were observed after the oxidation process. This work is dedicated to the memory of Prof. Francisco C. Nart.  相似文献   

6.
Alternate adsorption of positively charged colloid-Au nanoparticles (nano-Au⊕) and negatively charged hemoglobin (Hb) on L-cysteine (L-cys) modified gold electrode resulted in the assembly of {Hb/nano-Au⊕}n layer-by-layer films/L-cys modified gold electrode. The nano-Au⊕ was characterized by transmission electron micrograph (TEM) and microelectrophoresis. The modified electrode interface morphology was characterized by electrochemical impedance spectroscopy (EIS), atomic force mi- croscopy (AFM), cyclic voltammograms (CV) and chronoamperometry. Direct electron transfer between hemoglobin and gold electrodes was studied, and the apparent Michaelis-Menten constant ( km app) of the modified electrode was evaluated to be 0.10 mmol·L?1. Moreover, the higher activity of proteins in the nano-Au⊕ films could be retained compared with the electropolymerization membrane, since the pro- teins in nano-Au⊕ films retained their near-native structure. Direct electron transfer between hemoglo- bin and electrode and electrochemically catalyzed reduction of hydrogen peroxide on a modified elec- trode was studied, and the linear range was from 2.1×10-8 to 1.2 ×10?3 mol·L-1 (r = 0.994) with a detection limit of 1.1×10-8 mol·L-1 H2O2.  相似文献   

7.
The dependence of the potentials and peak currents of the electrooxidation of isomeric dihydroxybenzenes on the polarization mode of a mechanically renewed nickel electrode is studied by direct-current cyclic voltammetry. The results indicate that the oxidation peaks of hydroquinone, pyrocatechol, and resorcinol appear in alkaline (0.05–0.10 M KOH), neutral (0.02–0.10 M Na2SO4) and acidic (0.02–0.05 M H2SO4) supporting electrolytes. The peak shape and parameters depend on the composition of the supporting electrolyte, which creates the conditions for the formation of different nickel oxides on the electrode surface then involved in the electrooxidation of dihydroxybenzenes. The regeneration of the electrode surface also affects the peak parameters, especially for resorcinol, whose signals completely disappear without the electrode renewal. The analytical signals for three isomeric dihydroxybenzenes are peaks in an alkaline solution, and also hydroquinone and pyrocatechol peaks in neutral and acidic solutions.  相似文献   

8.
A sensitive complex absorptive wave of Ca-ARS was obtained by using differential pulse voltammetry when a mercury film glass carbon electrode was immersed in 0.1 mol L−1 KOH and 4.5×10−4 mol L−1 ARS solution. The peak potential obtained was −1.17 V (vs Ag-AgCl). The peak current was proportional to the concentration of calcium in the range of 5.0×10−8−4.2×10−5 mol L−1. The detection limit was 2.0×10−8 mol L−1. This method was applied successfully to determining traces of calcium in blood serum. The electrochemical behavior of the system was also studied by cyclic voltammetry, and the experiment results showed that the electrode process was an irreversible absorptive with two electrons participating. Translated from Journal of Beijing Normal University (Natural Science Edition), 2005, 41(2) (in Chinese)  相似文献   

9.
CeO2 nanoparticles approximately 12 nm in size were synthesized and subsequently characterized by XRD, TEM and UV-vis spectroscopy. Then, a gold electrode modified with CeO2 nanoparticles was constructed and characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The modified electrode demonstrated strong catalytic effects with high stability towards electrochemical oxidation of rutin. The anodic peak currents (measured by differential pulse voltammetry) increased linearly with the concentration of rutin in the range of 5.0 × 10−7–5.0 × 10−4 mol · L−1. The detection limit (S/N = 3) was 2.0 × 10−7 mol · L−1. The relative standard deviation (RSD) of 8 successive scans was 3.7% for 5.0 × 10−6 mol · L−1 rutin. The method showed excellent sensitivity and stability, and the determination of rutin in tablets was satisfactory.  相似文献   

10.
The effect of pH and neutral electrolyte on the interaction between humic acid/humate and γ-AlOOH (boehmite) was investigated. The quantitative characterization of surface charging for both partners was performed by means of potentiometric acid–base titration. The intrinsic equilibrium constants for surface charge formation were logK a,1 int=6.7±0.2 and logK a,2 int = 10.6±0.2 and the point of zero charge was 8.7±0.1 for aluminium oxide. The pH-dependent solubility and the speciation of dissolved aluminium was calculated (MINTEQA2). The fitted (FITEQL) pK values for dissociation of acidic groups of humic acid were pK 1 = 3.7±0.1 and pK 2 = 6.6±0.1 and the total acidity was 4.56 mmol g−1. The pH range for the adsorption study was limited to between pH 5 and 10, where the amount of the aluminium species in the aqueous phase is negligible (less than 10−5 mol dm−3) and the complicating side equilibria can be neglected. Adsorption isotherms were determined at pH ∼ 5.5, ∼8.5 and ∼9.5, where the surface of adsorbent is positive, neutral and negative, respectively, and at 0.001, 0.1, 0.25 and 0.50 mol dm−3 NaNO3. The isotherms are of the Langmuir type, except that measured at pH ∼ 5.5 in the presence of 0.25 and 0.5 mol dm−3 salt. The interaction between humic acid/humate and aluminium oxide is mainly a ligand-exchange reaction with humic macroions with changing conformation under the influence of the charged interface. With increasing ionic strength the surface complexation takes place with more and more compressed humic macroions. The contribution of Coulombic interaction of oppositely charged partners is significant at acidic pH. We suppose heterocoagulation of humic acid and aluminium oxide particles at pH ∼ 5.5 and higher salt content to explain the unusual increase in the apparent amount of humic acid adsorbed. Received: 20 July 1999 /Accepted in revised form: 20 October 1999  相似文献   

11.
In this study the application of home-made unmodified (GC) and bulk modified boron doped glassy carbon (GCB) electrodes for the voltammetric determination of the linuron was investigated. The electrodes were synthesized with a moderate temperature treatment (1000°C). Obtained results were compared with the electrochemical determination of the linuron using a commercial glassy carbon electrode (GC-Metrohm). The peak potential (E p ) of linuron oxidation in 0.1 mol dm−3 H2SO4 as electrolyte was similar for all applied electrodes: 1.31, 1.34 and 1.28 V for GCB, GC and GC-Metrohm electrodes, respectively. Potential of linuron oxidation and current density depend on the pH of supporting electrolyte. Applying GCB and GC-Metrohm electrodes the most intensive electrochemical response for linuron was obtained in strongly acidic solution (0.1 mol dm−3 H2SO4). Applying the boron doped glassy carbon electrode the broadest linear range (0.005–0.1 μmol cm−3) for the linuron determination was obtained. The results of voltammetric determination of the linuron in spiked water samples showed good correlation between added and found amounts of linuron and also are in good agreement with the results obtained by HPLC-UV method. This appears to be the first application of a boron doped glassy carbon electrode for voltammetric determination of the environmental important compounds.   相似文献   

12.
The effect of polymer–salt addition in the activated carbon electrode for electric double-layer capacitor (EDLC) has been investigated. A series of composite thin film electrode consisting of activated carbon, carbon black, polytetrafluoroethylene and polymer–salt complex (polyethyleneoxide–LiClO4) with an appropriate weight ratio were prepared and examined their performance for EDLCs using 1 mol L−1 LiClO4 in ethylene carbonate:diethylcarbonate electrolyte solution. The electrochemical capacitance performances of these electrodes with different compositions were characterized by cyclic voltammetry, galvanostatic charge–discharge cycling, and AC impedance measurements. By comparison, the best results were obtained with a composite electrode rich in polymer–salt additive (132 F g−1 at 100 mA g−1 of galvanostatic experiment). In general, the polymer–salt-containing electrode had shown improved performance over activated carbon electrodes without polymer–salt at high current density.  相似文献   

13.
The simultaneous determination of three isomers of phenylenediamines (o, m, and p-phenylenediamine) and two isomers of dihydroxybenzenes (catechol and resorcinol) in hair dyes was performed by capillary zone electrophoresis coupled with amperometric detection (CZE–AD). The effects of working electrode potential, pH and concentration of running buffer, separation voltage, and injection time on CZE–AD were investigated. Under the optimum conditions the five analytes could be perfectly separated in 0.30 mol L−1 borate–0.40 mol L−1 phosphate buffer (pH 5.8) within 15 min. A 300 μm diameter platinum electrode had good responses at +0.85 V (versus SCE) for the five analytes. Their linear ranges were from 1.0 × 10−6 to 1.0 × 10−4 mol L−1 and the detection limits were as low as 10−7 mol L−1 (S/N = 3). This working electrode was successfully used to analyze eight kinds of hair dye sample with recoveries in the range 91.0–108.0% and RSDs less than 5.0%. These results demonstrated that capillary zone electrophoresis coupled with electrochemical detection using a platinum working electrode as detector was convenient, highly sensitive, highly repeatable and could be used in the rapid determination of practical samples. Figure Electropherograms obtained from 10 mg mL−1 hair dye sample solutions at a platinum working electrode under optimum CZE–AD conditions: (a) natural black (I), (b) golden: (1) p-phenylenediamine, (2) m-phenylenediamine, (3) o-phenylenediamine, (4) resorcinol, and (5) catechol  相似文献   

14.
Carboxyl group-functionalized single-walled carbon nanotubes (SWNTs) and 2,6-pyridinedicarboxylic acid (PDC) were electropolymerized by cyclic voltammetry on a glassy-carbon electrode (GCE) surface to form composite films (SWNTs/PDC). Zirconia was then electrodeposited on the SWNTs/PDC/GCE from an aqueous electrolyte containing ZrOCl2 and KCl by cycling the potential between −1.1 V and +0.7 V at a scan rate of 20 mV s−1. DNA probes with a phosphate group at the 5′ end were easily immobilized on the zirconia thin films, because of the strong affinity between zirconia and phosphate groups. The sensors were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). EIS was used for label-free detection of the target DNA by measuring the increase of the electron transfer resistance (R et) of the electrode surface after the hybridization of the probe DNA with the target DNA. The PAT gene fragment and polymerase chain reaction (PCR) amplification of the NOS gene from transgenically modified beans were satisfactorily detected by use of this DNA electrochemical sensor. The dynamic range of detection of the sensor for the PAT gene fragment was from 1.0 × 10−11 to 1.0 × 10−6 mol L−1 and the detection limit was 1.38 × 10−12 mol L−1.  相似文献   

15.
The analytical properties of an ion-selective electrode sensitive to labetalol with a liquid membrane, based on ion-pair complexes with sodium tetraphenylborate (TPB-Na+) are described. The studied electrode can be used for the determination of labetalol hydrochloride as a protonated form of labetalol in pharmaceuticals. The calibration curve, e.g. EMF=f(pC LabHCl ) is linear in the range from 10−5 to 10−2 mol L−1 with a correlation coefficient of 0.9992 and slope of 61.13 mV/decade, which is close to the Nernstian slope. The detection limit of the examined electrode is 7.20×10−6 mol L−1. The influence of pH of the tested solutions on the formulation of the electrode is not as considerable since the electrode works correctly in the pH range 3.0–8.0. The main attributes of the developed electrode are: stability, good reproducibility of EMF and short response time, close to 30 seconds depending on labetalol concentration in the solution. The electrode shows good selectivity for many inorganic ions. The selectivity for drug cations is weaker due to the structural similarity of the interfering cations to labetalol. The results of labetalol determination using direct potentiometry in drugs such as Pressocard (Polpharma) and Trandate (GlaxoWellcome) were compatible with the quantity of labetalol declared by the manufacturer, and with parallel UV spectrophotometric and HPLC determinations.  相似文献   

16.
17.
Influence of electrode morphology on electrochemical properties of lead dioxide electrodes (β-PbO2) for oxygen-ozone evolution reactions in acid medium was investigated using scanning electronic microscopy (SEM), cyclic voltammetry (CV), polarization curves (PC), and determination of the current efficiency (Φ). Experimental findings revealed that application of high electrodeposition current densities furnishes more rough β-PbO2 films. Surface characteristics were verified by SEM images and the analysis of interfacial pseudo-capacitances and morphology factor (φ). Kinetic study of the overall electrode process (O2 + O3) based on the analysis of the Tafel slope revealed that the electrode morphology and electrolyte composition considerably affect the electrode kinetics. In most cases, the existence of two Tafel slopes distributed in the low and high overpotential domains was observed. Abnormal Tafel slopes (b ≠ 120 mV) obtained for the primary water discharge step during water electrolysis were interpreted considering the apparent charge transfer coefficient (α apa). Optimum conditions for the ozone production were obtained for the less rough β-PbO2 electrode immersed in a sulfuric acid solution (1.0 mol dm−3) containing KPF6 (30 × 10−3 mol dm−3), where the current efficiency of 15 mass % for the ozone production was obtained.  相似文献   

18.
The electrochemical behaviors of uric acid (UA) at the penicillamine (Pen) self-assembled monolayers modified gold electrode (Pen/Au) have been studied. The Pen/Au electrode is demonstrated to promote the electrochemical response of UA by cyclic voltammetry (CV). The diffusion coefficient D of UA is 6.97 × 10−6 cm2 s−1. In differential pulse voltammetric (DPV) measurements, the Pen/Au electrode can separate the UA and ascorbic acid (AA) oxidation potentials by about 120 mV and can be used for the selective determination of UA in the presence of AA. The detection limit was 1 × 10−6 mol L−1. The modified electrode shows excellent sensitivity, good selectivity and antifouling properties.  相似文献   

19.
This paper presents a simple electrochemical approach for the detection of thrombin, using aptamer-modified electrodes. The use of gold nanoparticles results in significant signal enhancement for subsequent detection. 1,6-Hexanedithiol was used as the medium to link Au nanoparticles to a bare gold electrode. Anti-thrombin aptamers were immobilized on the gold nanoparticles’ surfaces by self-assembly. The packing density of aptamers was determined by cyclic voltammetric (CV) studies of redox cations (e.g., [Ru(NH3)6]3+) which were electrostatically bound to the DNA phosphate backbones. The results indicate that the total amount of aptamer probes immobilized on the gold nanoparticle surface is sixfold higher than that on the bare electrode, leading to increased sensitivity of the aptasensor and a detection limit of 1 pmol L−1. Based on the Langmuir model, the sensor signal displayed an almost perfect linear relationship over the range of 1 pmol L−1 to 30 nmol L−1. Moreover, the proposed aptasensor is highly selective and stable. In summary, this biosensor is simple, highly sensitive, and selective, which is beneficial to the ever-growing interest in fabricating portable bio-analytical devices with simple electrical readout procedures.  相似文献   

20.
A simple and highly selective electrochemical method has been developed for the simultaneous determination of hydroquinone (HQ) and catechol (CC) at a glassy carbon electrode covalently modified with penicillamine (Pen). The electrode is used for the simultaneous electrochemical determination of HQ and CC and shows an excellent electrocatalytical effect on the oxidation of HQ and CC upon cyclic voltammetry in acetate buffer solution of pH 5.0. In differential pulse voltammetric measurements, the modified electrode was able to separate the oxidation peak potentials of HQ and CC present in binary mixtures by about 103 mV although the bare electrode gave a single broad response. The determination limit of HQ in the presence of 0.1 mmol L−1 CC was 1.0 × 10−6 mol L−1, and the determination limit of CC in the presence of 0.1 mmol L−1 HQ was 6.0 × 10−7 mol L−1. The method was applied to the simultaneous determination of HQ and CC in a water sample. It is simple and highly selective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号