首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 531 毫秒
1.
将胶原绑定结构域(CBD)多肽序列与骨形态发生蛋白2模拟肽(BMP2-MP)序列连接制备具有胶原绑定能力的CBD-BMP2-MP, 再将CBD-BMP2-MP与聚丙交酯-乙交酯/胶原(PLGA/COL)3D打印支架相结合, 以支架表面的胶原成分为媒介, 将CBD-BMP2-MP更有效地固定于骨修复材料上, 达到对其进行改性的目的. 利用扫描电子显微镜(SEM)、 电子万能试验机和接触角测量仪对复合支架表面形貌、 力学强度和亲水性等材料学性能进行评价. 用荧光成像法评测 CBD-BMP2-MP及BMP2-MP与支架材料的结合能力. 在各组支架材料表面接种MC3T3-E1细胞进行体外培养, 采用CCK-8、 鬼笔环肽荧光染色、 茜素红染色及qPCR综合评价细胞在材料表面的黏附、 增殖和成骨分化等细胞行为, 研究CBD-BMP2-MP修饰的3D多孔PLGA/COL复合支架的生物学性能. 研究结果表明, 利用3D打印技术制备的多孔支架具有形貌可控的孔隙结构, 为细胞生长创造更有利的细胞微环境, 支架表面胶原成分的加入提高了支架材料的亲水性, 同时对支架材料本身的力学性能无任何影响, 提高了复合支架本身的生物相容性. 与普通BMP2-MP相比, CBD-BMP2-MP具有更好的胶原绑定能力, 与复合支架的结合更稳定, 提高了PLGA/COL复合支架对BMP2-MP的负载能力. 支架表面负载CBD-BMP2-MP后具有极强的促细胞成骨分化能力. MC3T3-E1细胞表现出更高的钙沉积能力, 并且成骨分化相关基因Runx2, ALP, COL-I及OPN等水平也有了明显提升. 表明CBD-BMP2-MP多孔复合支架具有良好的生物相容性和成骨诱导活性, 在骨组织修复领域具有良好的应用前景.  相似文献   

2.
利用复乳-溶剂挥发法合成适合细胞三维培养的聚乳酸-羟基乙酸共聚物(PLGA)多孔微球, 并对其表面进行丝素改性, 利用扫描电子显微镜、 能谱、 红外光谱和X射线衍射等对改性前后PLGA多孔微球的理化特性进行表征. 原代培养人牙龈间充质干细胞并进行成骨(茜素红染色)成脂(油红O染色)分化鉴定. 通过负压混悬法将牙龈干细胞负载于丝素改性的PLGA多孔微球上进行5-乙炔基-2'-脱氧尿嘧啶核苷(EdU)细胞增殖及成骨分化研究. 结果表明, 原代培养的牙龈干细胞具有多向分化潜能, 负载在丝素改性的PLGA多孔微球上的细胞有利于细胞增殖. 丝素改性的PLGA多孔微球是良好的细胞递送载体, 为进一步修复牙槽骨缺损提供了科学依据.  相似文献   

3.
低热-高压法制备PLGA多孔支架及其体外降解研究   总被引:6,自引:1,他引:6  
采用低热-高压法制备了聚(dl-丙交酯/乙交酯)75/25(PLGA75/25)组织工程多孔支架。该方法避免了使用有机溶剂,支架的孔隙率在90%以上,孔径大小分布均匀。多孔支架经过酒精处理后,支架表面产生许多微小的凹陷;用藻酸钙改性处理后,支架形态保持良好。两种处理都使支架的压缩强度有所增大,亲水性增强。虽然孔隙率高的支架降解速率稍慢,但其体外降解规律基本一致:特性粘数争力学强度衰减快,而质量损失较慢,降解6周后,支架的质量损失仅为3%左右;体外降解3周后,支架的形态保持良好,可望在细胞移植争组织修复的早期发挥支撑作用。  相似文献   

4.
摘要 采用喷雾干燥法制备包载地塞米松(Dex)的聚L-丙交酯-b-聚乙二醇(PLLA-PEG)微球, 以热致相分离/粒子洗去法制备聚乙交酯-co-丙交酯(PLGA)多孔支架, 通过复合溶结法将载药微球固定于PLGA多孔支架中, 制得载药微球-支架(记为MS-S). 另外, 在支架制备过程中将Dex直接加入PLGA溶液中, 制得对比的直接载药支架(记为D-S). 以扫描电镜观察微球和支架的微观形貌, 在循环压应力与水浴摇床两种环境下分别对上述两种载药支架进行控制释放Dex的实验, 用紫外-可见光分光光度计测定Dex的累积释放量. 结果表明, Dex及微球的载入对PLGA支架的整体形貌影响较小; 循环压应力显著提高了Dex从载药支架中的释放速率, 与D-S相比, MS-S延缓了药物的释放. 研究模拟体内循环压应力下支架控制释放药物规律对于实现理想的临床效果具有重要意义.  相似文献   

5.
超临界CO_2发泡法制备PLGA多孔组织工程支架   总被引:1,自引:0,他引:1  
利用超临界CO2(SC-CO2)发泡法制备了一系列聚(乳酸-乙醇酸)共聚物(PLGA)多孔支架材料,研究了PLGA分子量和组成、发泡过程温度、压力以及泄压速率等对泡孔尺寸及形态的影响.结果表明,随着PLGA组成中乳酸含量的增加,泡孔平均孔径增大且连通性增强;提高过程压力易形成孔径小且泡孔密度大的微孔结构材料;降低泄压速率,泡孔易合并形成大孔.聚合物处于高弹态时,较低的发泡温度易导致特殊的多面体结构大孔的形成;而当温度较高时,泡孔塌缩形成球形微孔结构,且泡孔尺寸随着温度升高而增大.SC-CO2发泡法能有效地去除有机溶剂,避免在高温条件下操作,可以实现5~500μm范围内孔径可控的PLGA多孔支架材料的制备.  相似文献   

6.
研究了37℃下吗啉二酮衍生物与L-丙交酯的共聚物在磷酸盐缓冲液(PBS)中的降解,并且与聚(L-丙交酯与乙交酯)(PLGA)的降解进行了比较。通过静滴接触角测量、扫描电镜(SEM)、X衍射(XRD)、凝胶色谱仪(GPC)、核磁共振(1H-NMR)和红外光谱(FT-IR)等方法研究了材料的亲水性、表面形貌、结晶结构、失重率、分子量和结构的变化等。结果表明:与PLGA相比,吗啉二酮衍生物与L-丙交酯的共聚物具有更好的亲水性,接触角达到了74°,降解3个月后数均分子量下降80%以上,该共聚物能够实现两组份的同步降解。  相似文献   

7.
通过生物3D打印将聚L-丙交酯-己内酯PLCL(摩尔比:LLA/CL=90/10)和聚对二氧环己酮PPDO共混物制备成平均孔径约为500μm,孔隙率为60%的骨修复支架,并进行了15 w的降解实验。通过DSC测试分析材料和支架的热力学性能;通过SEM照片分析骨修复支架。结果表明:PPDO的加入明显缩短了PLCL/PPDO复合支架的降解时间;当支架中PPDO的含量超过10%时,PLCL和PPDO的相容性越差,支架表面的粗糙程度越高,且支架内部相分离越明显。  相似文献   

8.
改性纳米羟基磷灰石/PLGA复合材料的制备及生物活性   总被引:2,自引:0,他引:2  
以低聚乳酸接枝改性的羟基磷灰石纳米粒子(op-HA)和聚丙交酯-乙交酯(PLGA)制备的生物可降解纳米复合材料(op-HA/PLGA)为研究对象, 采用FTIR, TGA, ESEM和EDX分析其接枝反应、接枝率、表面形貌和钙磷沉积情况, 通过在材料膜表面接种兔成骨细胞进行体外培养, 采用荧光染色、NIH Image J图像分析和Real-time PCR综合评价细胞在材料表面的形态、黏附面积比、增殖能力和基因表达水平, 以此评价新型骨修复纳米复合材料op-HA/PLGA的表面性质和生物活性. 研究结果表明, op-HA的表面接枝率为8.3%, 掺入至PLGA后可形成富含钙磷的粗糙表面, 促进成骨细胞的黏附、扩展和增殖, 提高Ⅰ型胶原蛋白(Collagen-Ⅰ)、骨形态蛋白-2(BMP-2)和骨连接蛋白(Osteonectin)的基因表达水平, 提高材料的钙磷沉积能力. op-HA/PLGA具有良好的细胞相容性和成骨活性.  相似文献   

9.
采用开环聚合方法合成了一系列水溶性生物可降解的低聚(丙交酯-co-丙烯酸酯碳酸酯)-b-聚乙二醇-b-低聚(丙交酯-co-丙烯酸酯碳酸酯)(OLAC-PEG-OLAC)三嵌段共聚物,并通过光交联方法方便制备得到具生物活性的新型生物可降解水凝胶.流变测试表明水凝胶储存模量(170~10000 Pa)和凝胶时间(0.8~8min)均可通过调节丙烯酸酯碳酸酯(AC)单元数、聚合物浓度及光引发剂浓度等得到控制.降解实验表明水凝胶的降解速率可通过改变AC和丙交酯(LA)单元数进行调控.含巯基的生物活性分子如RGDC短肽可通过迈克尔加成反应直接链接到OLAC-PEG-OLAC上,由此可方便制备可注射性的具生物活性的生物可降解水凝胶.MG63成骨细胞实验表明RGDC短肽功能化的OLAC-PEG-OLAC水凝胶可很好地促进细胞黏附和生长.该快速光交联生物可降解水凝胶以其优异的凝胶、降解和生物功能化等性能可望为生物组织工程提供理想的三维活性多孔支架.  相似文献   

10.
刘琳  孔祥东  蔡玉荣  姚菊明 《化学学报》2008,66(16):1919-1923
应用共混法制备了纳米羟基磷灰石/丝素蛋白复合支架材料, 通过体外降解和细胞培养实验研究了复合支架材料的降解特性和生物相容性. 体外降解实验结果显示, 复合支架材料具有稳定的降解能力; 在降解过程中, 羟基磷灰石由于与降解液发生钙、磷等离子的交换, 使其结晶得到了进一步生长和完善. 利用细胞计数法、四甲基偶氮唑盐(MTT)比色法和碱性磷酸酶(ALP)活性测定等分析了复合支架材料的生物相容性, 结果表明, MG63细胞在复合支架材料上具有良好的粘附、增殖能力, 并可引起早期的骨分化. 因此, 纳米羟基磷灰石/丝素蛋白复合支架作为骨组织工程的支架材料具有良好的应用前景.  相似文献   

11.
Degradation behaviors of porous scaffolds play an important role in the engineering process of a new tissue. In this study, three-dimensional porous silk fibroin/chitosan (SFCS) scaffolds were successfully prepared by freeze-drying method. In vitro degradation behaviors of SFCS scaffolds have been systematically investigated up to 8 weeks in phosphate buffer saline (PBS) solution at 37 °C. The following properties of the scaffolds were measured as a function of degradation time: pore morphology, structure, weight loss, and wet/dry weight value. The pH value of the PBS solution during degradation was also detected. SFCS scaffolds maintained its porous structure till 6 weeks of degradation. During the first 2 weeks, the pH value fluctuated in a narrow range from 6.53 to 6.93. SFCS scaffolds degraded much more quickly during the first 2 weeks, and the weight loss reached 19.28 wt% after 8 weeks of degradation. The degradation process affects little SFCS scaffolds' swelling properties.  相似文献   

12.
In vitro degradation of porous poly(l-lactide-co-glycolide)/β-tricalcium phosphate (PLGA/β-TCP) scaffolds was studied by incubating the samples in phosphate buffered saline (PBS) at 37 °C and pH 7.4 under dynamic loading with respect to static conditions for 12 weeks. Under dynamic conditions, acidity of PBS was alleviated by the better solution circulation, and water absorption of the scaffolds increased more than that under static conditions in the first 8 weeks. Changes in mass, height, diameter, relative molecular mass and its distribution also happened more remarkably under dynamic conditions. Moreover, obvious cracks and a larger amount of β-TCP particles were observed on the wall of the scaffolds after degradation for 12 weeks under dynamic loading. Compressive modulus and strength showed an increase from the beginning to the 10th week but were lower after then. Results showed that degradation of PLGA/β-TCP scaffolds under dynamic conditions exhibited a significantly faster rate than that under static conditions.  相似文献   

13.
The degradation behavior of porous scaffolds plays an important role in the synthesis of new tissue. In this study, three-dimensional hybrid porous scaffolds of chitosan (CS) comprised of nanostructured carbon (graphene oxide (GO) and single-walled carbon nanohorns (SWCNH)) were prepared by freeze-drying method. In-vitro degradation behavior of scaffolds was investigated up to 8 weeks in phosphate buffer saline (PBS) solution at 37 °C. The characteristics of scaffolds explored as a function of degradation time include crystalline structure, pore morphology, molecular weight, and wet/dry weight. The pH value of the PBS solution during degradation was also monitored. The study demonstrates for the first time that hybrid chitosan scaffolds with nanostructured carbon (GO and SWCNH) are potentially more stable than pure chitosan scaffolds during the time period required for tissue regeneration. The stability of hybrid scaffolds is attributed to nanostructured carbon that was processed with the objective that it is present in a robust manner via a highly cross-linked dense network structure. The chemical structure of chitosan was disrupted within a short period of two weeks, while disruption occurred in hybrid scaffolds after eight weeks. This was accompanied by a weight loss of ∼28% in pure chitosan and ∼20% in hybrid scaffolds. Furthermore, the degraded products were of low molecular weight in pure chitosan and high molecular weight in hybrid chitosan scaffolds. This led to significant decrease in the pH of solution to ∼6.2 in pure chitosan and to ∼7.2 in hybrid scaffolds. The observations clearly underscore that the introduction of GO and SWCNH via cross-link mechanism in CS is a potentially viable approach to tune the degradation rate of hybrid scaffolds in tissue engineering.  相似文献   

14.
The biodegradable porous composite scaffold, composed of poly(lactide-co-glycolide)(PLGA) and hydroxyapatite nanoparticles(n-HAP) surface-grafted with poly(L-lactide)(PLLA)(g-HAP)(g-HAP/PLGA), was fabricated using the solvent casting/particulate leaching method, and its in vivo degradation behavior was investigated by the intramuscular implantation in rabbits. The composite of un-grafted n-HAP/PLGA and neat PLGA were used as controls. The scaffolds had interconnected pore structures with average pore sizes between 137 μm and 148 μm and porosities between 83% and 86%. There was no significant difference in the pore size and porosity among the three scaffolds. Compared with n-HAP/PLGA, the thermo-degradation temperature(Tc) of g-HAP/PLGA decreased while its glass transition temperature(Tg) increased. The weight change, grey value analysis of radiographs and SEM observation showed that the composite scaffolds of g-HAP/PLGA and n-HAP/PLGA showed slower degradation and higher mineralization than the pure PLGA scaffold after the intramuscular implantation. The rapid degradation of PLGA, g-HAP/PLGA and n-HAP/PLGA occurred at 8–12 weeks, 12–16 weeks and 16–20 weeks, respectively. Compared with n-HAP/PLGA, g-HAP/PLGA showed an improved absorption and biomineralization property mostly because of its improved distribution of HAP nanoparticles. The levels of both calcium and phosphorous in serum and urine could be affected to some extent at 3–4 weeks after the implantation of g-HAP/PLGA, but the biochemical detection of serum AST, ALT, ALP, and GGT as well as BUN and CRE showed no obvious influence on the functions of liver and kidney.  相似文献   

15.
In this paper, the yield strength and elastic modulus of Poly (lactide-co-glycolide) (PLGA) and PLGA/nano-biphasic calcium phosphate (nBCP) composite scaffolds, before and during in-vitro degradation, have been evaluated. Composite scaffolds were made by using PLGA matrix and 10-50 wt.% nBCP powder as the reinforcement material. All scaffolds, with more than 89% porosity, were fabricated by thermally-induced phase separation (TIPS). During in-vitro degradation (0-8 weeks), the PLGA/nBCP scaffolds showed both more weight loss and better mechanical properties as compared to neat PLGA scaffolds. The PLGA/nBCP scaffolds with 30 wt.% nBCP illustrated the highest value of yield strength among the composite scaffolds, before and after degradation, until 6 weeks. After 8 weeks, the yield strength values were very poor and close to each other. The values of elastic modulus for all samples were less than the half of their initial values after 6 weeks. However, after 8 weeks, the elastic moduli of all samples reduced to negligible values.  相似文献   

16.
In this research, the novel three-dimensional (3D) porous scaffolds made of poly(lactic-co-glycolic acid) (PLGA)/nano-fluorohydroxyapatite (FHA) composite microspheres was prepared and characterize for potential bone repair applications. We employed a microsphere sintering method to produce 3D PLGA/nano-FHA scaffolds composite microspheres. The mechanical properties, pore size, and porosity of the composite scaffolds were controlled by varying parameters, such as sintering temperature, sintering time, and PLGA/nano-FHA ratio. The experimental results showed that the PLGA/nano-FHA (4:1) scaffold sintered at 90 °C for 2 h demonstrated the highest mechanical properties and an appropriate pore structure for bone tissue engineering applications. Furthermore, MTT assay and alkaline phosphatase activity (ALP activity) results ascertained that a general trend of increasing in cell viability was seen for PLGA/nano-FHA (4:1) scaffold sintered at 90 °C for 2 h by time with compared to control group. Eventually, obtained experimental results demonstrated PLGA/nano-FHA microsphere-sintered scaffold deserve attention utilizing for bone tissue engineering.  相似文献   

17.
Qi R  Shen M  Cao X  Guo R  Tian X  Yu J  Shi X 《The Analyst》2011,136(14):2897-2903
One major method used to evaluate the biocompatibility of porous tissue engineering scaffolding materials is MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The MTT cell viability assay is based on the absorbance of the dissolved MTT formazan crystals formed in living cells, which is proportional to the number of viable cells. Due to the strong dye sorption capability of porous scaffolding materials, we propose that the cell viability determined from the MTT assay is likely to give a false negative result. In this study, we aim to explore the effect of the adsorption of MTT formazan on the accuracy of the viability assay of cells cultured onto porous electrospun poly(lactic-co-glycolic acid) (PLGA) nanofibers, HNTs (halloysite nanotubes)/PLGA, and CNTs (multiwalled carbon nanotubes)/PLGA composite nanofibrous mats. The morphology of electrospun nanofibers and L929 mouse fibroblasts cultured onto the nanofibrous scaffolds were observed using scanning electron microscopy. The viability of cells proliferated for 3 days was evaluated through the MTT assay. In the meantime, the adsorption of MTT formazan onto the same electrospun nanofibers was evaluated and the standard concentration-absorbance curve was obtained in order to quantify the contribution of the adsorbed MTT formazan during the MTT cell viability assay. We show that the PLGA, and the HNTs- or CNTs-doped PLGA nanofibers display appreciable MTT formazan dye sorption, corresponding to 35.6-50.2% deviation from the real cell viability assay data. The better dye sorption capability of the nanofibers leads to further deviation from the real cell viability. Our study gives a general insight into accurate MTT cytotoxicity assessment of various porous tissue engineering scaffolding materials, and may be applicable to other colorimetric assays for analyzing the biological properties of porous scaffolding materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号