首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An effective algorithmic method (Anco, S. C. and Bluman, G. (1996). Journal of Mathematical Physics 37, 2361; Anco, S. C. and Bluman, G. (1997). Physical Review Letters 78, 2869; Anco, S. C. and Bluman, G. (1998). European Journal of Applied Mathematics 9, 254; Anco, S. C. and Bluman, G. (2001). European Journal of Applied Mathematics 13, 547; Anco, S. C. and Bluman, G. (2002). European Journal of Applied Mathematics 13, 567 is used for finding the local conservation laws for some nonlinear partial differential equations. The method does not require the use or existence of a variational principle and reduces the calculation of conservation laws to solving a system of linear determining equations similar to that of finding symmetries. An explicit construction formula is derived which yields a conservation law for each solution of the determining system. Different methods to construct new exact solution classes for the same nonlinear partial differential equations are also presented, which are named hyperbolic function method and the Bäcklund transformations. On the other hand, other methods and transformations are developed to obtain exact solutions for some nonlinear partial differential equations.  相似文献   

2.
Motivated by the widely used ansätz method and starting from the modified Riemann-Liouville derivative together with a fractional complex transformation that can be utilized to transform nonlinear fractional partial differential equations to nonlinear ordinary differential equations, new types of exact traveling wave solutions to three important nonlinear space- and time-fractional partial differential equations are obtained simultaneously in terms of solutions of a Riccati equation. The results are new and first reported in this paper.  相似文献   

3.
The behavior of the steady-state (or the traveling wave) solutions for a class of nonlinear partial differential equations is studied. The nonlinearity in these equations is expressed by the presence of the convective term. It is shown that the steady-state (or the traveling wave) solution may explode at a finite value of the spatial (or the characteristic) variable. This holds whatever the order of the spatial derivative term in these equations. Furthermore, new special solutions of a set of equations in this class are also found.  相似文献   

4.
Differential-difference equations are considered to be hybrid systems because the spatial variable n is discrete while the time t is usually kept continuous.Although a considerable amount of research has been carried out in the field of nonlinear differential-difference equations,the majority of the results deal with polynomial types.Limited research has been reported regarding such equations of rational type.In this paper we present an adaptation of the(G /G)-expansion method to solve nonlinear rational differential-difference equations.The procedure is demonstrated using two distinct equations.Our approach allows one to construct three types of exact traveling wave solutions(hyperbolic,trigonometric,and rational) by means of the simplified form of the auxiliary equation method with reduced parameters.Our analysis leads to analytic solutions in terms of topological solitons and singular periodic functions as well.  相似文献   

5.
More new exact solutions for a class of nonlinear coupled differential equations are obtained by using a direct and efficient hyperbola function transform method based on the idea of the extended homogeneous balance method.  相似文献   

6.
By using the generally projective Riccati equation method, a series of doubly periodic solutions (Jacobi elliptic function solution) for a class of nonlinear partial differential equations are obtained in a unified way. When the module m→1, these solutions exactly degenerate to the soliton solutions of the equations. Then we reveal the relationship between the soliton-like solutions obtained by other authors and these soliton solutions of the equations.  相似文献   

7.
In this paper, we extend the mapping transformation method through introducing variable coefficients.By means of the extended mapping transformation method, many explicit and exact general solutions with arbitrary functions for some nonlinear partial differential equations, which contain solitary wave solutions, trigonometric function solutions, and rational solutions, are obtained.  相似文献   

8.
The generalized conditional symmetry approach is applied to study the variable separation of the extended wave equations. Complete classification of those equations admitting functional separable solutions is obtained and exact separable solutions to some of the resulting equations are constructed.  相似文献   

9.
The generalized conditional symmetry approach is applied to study the variable separation of the extended wave equations. Complete classification of those equations admitting functional separable solutions is obtained and exact separable solutions to some of the resulting equations are constructed.  相似文献   

10.
A Laplace decomposition algorithm is adopted to investigate numerical solutions of a class of nonlinear partial differential equations with nonlinear term of any order, utt + auxx + bu + cup + du^2p-1 = 0, which contains some important equations of mathematical physics. Three distinct initial conditions are constructed and generalized numerical solutions are thereby obtained, including numerical hyperbolic function solutions and doubly periodic ones. Illustrative figures and comparisons between the numerical and exact solutions with different values of p are used to test the efficiency of the proposed method, which shows good results are azhieved.  相似文献   

11.
In this paper, the fractional auxiliary sub-equation expansion method is proposed to solve nonlinear fractional differential equations. To illustrate the effectiveness of the method, we discuss the space-time fractional Kd V equation, the space-time fractional RLW equation, the space-time fractional Boussinesq equation, and the(3+1)-spacetime fractional ZK equation. The solutions are expressed in terms of fractional hyperbolic and fractional trigonometric functions. These solutions are useful to understand the mechanisms of the complicated nonlinear physical phenomena and fractional differential equations. Among these solutions, some are found for the first time. The analytical solution of homogenous linear FDEs with constant coefficients are obtained by using the series and the Mittag–Leffler function methods. The obtained results recover the well-know solutions when α = 1.  相似文献   

12.
The double-sine-Gordon equation is studied by means of the so-called mapping method. Some new exact solutions are determined.  相似文献   

13.
By using an improved hyperbola function method, several types of exact travelling wave solutions to a coupled nonlinear evolution equation are obtained, which include kink-shaped soliton solutions, bell-shaped soliton solutions, envelop solitary wave solutions, and new solitary waves. The method can be applied to other nonlinear evolution equations in mathematical physics.  相似文献   

14.
By using an improved hyperbola function method, several types of exact travelling wave solutions to a coupled nonlinear evolution equation are obtained, which include kink-shaped soliton solutions, bell-shaped soliton solutions, envelop solitary wave solutions, and new solitary waves. The method can be applied to other nonlinear evolution equations in mathematical physics.  相似文献   

15.
The new rational form solutions to the elliptic equation are shown, and then these solutions to the elliptic equation are taken as a transformation and applied to solve nonlinear coupled wave equations. It is shown that more novel kinds of solutions are derived, such as periodic solutions of rational form, solitary wave solutions of rational form,and so on.  相似文献   

16.
The new rational form solutions to the elliptic equation are shown, and then these solutions to the elliptic equation are taken as a transformation and applied to solve nonlinear coupled wave equations. It is shown that more novel kinds of solutions are derived, such as periodic solutions of rational form, solitary wave solutions of rational form,and so on.  相似文献   

17.
New exact solutions are determined to the coupled mKdV equations by means of modified mapping method.  相似文献   

18.
In this paper, by applying the Jacobi elliptic function expansion method, the periodic solutions for two coupled nonlinear partial differential equations are obtained.  相似文献   

19.
In this paper, by applying the Jacobi elliptic function expansion method, the periodic solutions for two coupled nonlinear partial differential equations are obtained.  相似文献   

20.
We investigate an operator renormalization group method to extract and describe the relevant degrees of freedom in the evolution of partial differential equations. The proposed renormalization group approach is formulated as an analytical method providing the fundamental concepts of a numerical algorithm applicable to various dynamical systems. We examine dynamical scaling characteristics in the short-time and the long-time evolution regime providing only a reduced number of degrees of freedom to the evolution process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号