首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Satish D Joglekar 《Pramana》1989,32(3):195-207
We discuss the general theory of renormalization of unbroken gauge theories in the nonlinear gauges in which the gauge-fixing term is of the form We show that higher loop renormalization modifiesfα [A] to contain ghost terms of the form and show how the corresponding ghost terms are deduced fromfα [A, c, c] uniquely. We show that the theory can be renormalized while preserving a modified form of BRS invariance by multiplicative and independent renormalizations onA, c, g, η, ζ, τ. We briefly discuss the independence of the renormalized S-matrix from η,ζ, τ.  相似文献   

2.
3.
The global symmetry implied by the fact that one can multiply all masses with a common constant is made into a local, gauge symmetry. The matter action then becomes Conformally invariant and it seems natural to choose for the corresponding scalar gauge field the action for a conformally invariant (massless) scalar field. The resulting conformally invariant theory turns out to be equivalent to general relativity. Since this means that the usual Einstein-Hilbert action is not, in fact, a true gauge action for the space-time geometry, the full theory ought to be supplied with such a term. Gauge-theoretic arguments and conformal invariance requirements dictate its form.  相似文献   

4.
An exact renormalization group equation is written down for the world sheet theory describing the bosonic open string in general backgrounds. Loop variable techniques are used to make the equation gauge invariant. This is worked out explicitly up to level 3. The equation is quadratic in the fields and can be viewed as a proposal for a string field theory equation. As in the earlier loop variable approach, the theory has one extra space dimension and mass is obtained by dimensional reduction. Being based on the sigma model RG, it is background independent. It is intriguing that in contrast to BRST string field theory, the gauge transformations are not modified by the interactions up to the level calculated. The interactions can be written in terms of gauge invariant field strengths for the massive higher spin fields and the non-zero mass is essential for this. This is reminiscent of Abelian Born–Infeld action (along with derivative corrections) for the massless vector field, which is also written in terms of the field strength.  相似文献   

5.
In arXiv:1202.4298 gauge invariant interacting equations were written down for the spin 2 and spin 3 massive modes using the exact renormalization group of a world sheet theory. This is generalized to all the higher levels in this paper. An interacting theory of an infinite tower of massive higher spins is obtained. They appear as a compactification of a massless theory in one higher dimension. The compactification and consequent mass is essential for writing the interaction terms. Just as for spin 2 and spin 3, the interactions are in terms of gauge invariant “field strengths” and the gauge transformations are the same as for the free theory. This theory can then be truncated in a gauge invariant way by removing one oscillator of the extra dimension to match the field content of BRST string (field) theory. The truncation has to be done level by level and results are given explicitly for level 4. At least up to level 5, the truncation can be done in a way that preserves the higher-dimensional structure. There is a relatively straightforward generalization of this construction to (arbitrary) curved space–time and this is also outlined.  相似文献   

6.
Although it has been known for a long time that the special case nμAμ = 0 for an axial gauge of a vector field Aμ, characterized by a direction nμ, is free from the peculiar loop complications inherent in all other known gauges of non-Abelian gauge theories, practical use of this ghost-free gauge has often met with some reserve. The reasons were always difficulties in the development of the theoretical formalism, all of which can be traced back to a singularity at nμpμ = 0 where p is some four-momentum. This paper, which is a sequel to an earlier one by one of the authors, is intended to show that within the functional integration formalism a consistent field theory can be developed. Here we first prove the gauge invariance of the renormalized theory, allowing for the presence of an arbitrary number of scalar and fermion fields with spontaneous symmetry breaking. Then it is shown that all on-shell elements for the physical S-matrix between properly selected physical sources are independent of nμ (gauge invariant) and so are the renormalized masses.  相似文献   

7.
A Dhar  V Gupta 《Pramana》1983,21(3):207-225
It has recently been shown that any physical quantity ℛ, in perturbation theory, can be obtained as a function of only the renormalization scheme (rs) invariants,ρ 0,ρ 1,ρ 2, … Physical predictions, to any given order, are renormalization scheme independent in this approach. Quantum chromodynamics (qcd) predictions to second order, within thisrs-invariant perturbation theory, are given here for several processes. These lead to some novel relations between experimentally measurable quantities, which do not involve the unknownqcd scale parameter Λ. They can therefore be directly confronted with experiments and this has been done wherever possible. It is suggested that these relations can be used to probe the neglected higher order corrections.  相似文献   

8.
9.
We construct a gauge theory of the integral form which is invariant under translation and rotation and in which very high frequency vibration modes (which must be described in terms of quarks and gluons) are cut off in the same manner as in the usual lattice gauge theory.  相似文献   

10.
We have determined the charge renormalization function β(g) for the supersymmetric nonabelian gauge model of Gliozzi, Scherk and Olive. We find that its one-and two-loop coefficients are zero. The model is thus anomaly-free at the level of our calculation.  相似文献   

11.
We study the connection between complete representations of gauge invariant operators and their Möbius representations acting in a limited space of functions. The possibility to restore the complete representations from Möbius forms in the coordinate space is proven and a method of restoration is worked out. The operators for transition from the standard BFKL kernel to the quasi-conformal one are found both in Möbius and total representations.  相似文献   

12.
As a first step towards a duality transformation for theSU(2) lattice gauge theory in 3 dimensions, the integration over all gauge variant variables is performed explicitly after introducing gauge invariant auxiliary variables. The resulting new Hamiltonian is complex and involves a sum over closed loops. Each of these loops is confined to an elementary cube of a dual lattice. Like in a previous investigation for theO(4) symmetric Heisenberg ferromagnet Rühl's boson representation is used to derive the result.  相似文献   

13.
It is shown that the Einstein-Maxwell theory of interacting electromagnetism and gravitation, can be derived from a first-order Lagrangian, depending on the electromagnetic field and on the curvature of a symmetric affine connection on the space-time M. The variation is taken with respect to the electromagnetic potential (a connection on a U(1) principal fiber bundle on M) and the gravitational potential (a connection on the GL(4, R) principal fiber bundle of frames on M). The metric tensor g does not appear in the Lagrangian, but it arises as a momentum canonically conjugated to . The Lagrangians of this type are calculated also for the Proca field, for a charged scalar field interacting with electromagnetism and gravitation, and for a few other interesting physical theories.  相似文献   

14.
Operator product expansions (OPE) for the product of a scalar field with its conjugate are presented as infinite sums of bilocal fields Vκ(x1,x2) of dimension (κ,κ). For a globally conformal invariant (GCI) theory we write down the OPE of Vκ into a series of twist (dimension minus rank) 2κ symmetric traceless tensor fields with coefficients computed from the (rational) 4-point function of the scalar field.

We argue that the theory of a GCI hermitian scalar field of dimension 4 in D=4 Minkowski space such that the 3-point functions of a pair of 's and a scalar field of dimension 2 or 4 vanish can be interpreted as the theory of local observables of a conformally invariant fixed point in a gauge theory with Lagrangian density .  相似文献   


15.
《Nuclear Physics B》1998,527(3):499-530
We construct gauge-invariant operators for singular knots in the context of Chern-Simons gauge theory. These new operators provide polynomial invariants and Vassiliev invariants for singular knots. As an application we present the form of the Kontsevich integral for the case of singular knots.  相似文献   

16.
17.
《Physics letters. [Part B]》1986,173(2):134-140
Gauge-fixed covariant actions of free open superstring field theory are re-examined and gauge invariant actions are derived systematically from them. The structure of the gauge-fixed actions is made clear in the course of consistently truncating Faddeev-Popov ghost and Nakanishi-Lautrup string fields.  相似文献   

18.
An essentially gauge invariant canonical Hamiltonian formulation is given for a non-Abelian Yang-Mills system coupled to a fermion field. The Hamiltonian contains only unconstrained dynamical variables, which in the quantum version satisfy canonical equal time commutation relations.  相似文献   

19.
The nonlinear equation for an abstract noncanonical 2-component Weyl spinor field — as used with the inclusion of internal symmetries in Heisenberg's nonlinear spinor theory of elementary particles — which is invariant under scale, phase, and Poincaré transformations is modified in such a way as to become invariant under spacetime dependent phase gauge and Poincaré gauge transformations. In such an equation a phase gauge field B m , six Lorentz gauge fields A[]m and four translation gauge fields gm have to be introduced. It is demonstrated that all these fields can be identified as certain combinations of the Weyl spinor field, and hence should be considered in a rough sense as bound states of this spinor field. In particular the electromagnetic field Bm and the gravitational field g m appear as S-states and P-states of a spinor-antispinor system. The noncanonical property and the operator character of the spinor field is essential for this result. The relation between the translation gauge field and the spinor field involves a fundamental length. In a classical geometrical interpretation this relation leads to Einstein's equation of gravitation without cosmological term in a Riemannian space without torsion if the fundamental length is identified with Planck's length. It is shown that this equation is covariant under the larger symmetry group of phase gauge and Poincaré gauge transformations. The modified nonlinear equation constructed solely from a single 2-component Weyl field hence seems to incorporate in an extremely compact way electromagnetic and gravitational interaction in addition to non-mass-zero interactions. In this equation no arbitrary dimensionless constants enter. The considerations can be generalized to Dirac spinor fields and to spinor fields involving additional interior degress of freedom.An abridged version of this paper was presented at the International Conference on Gravitation and Relativity, Copenhagen, July 1971.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号