首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The treatment of [Ru(L(OEt))(N)Cl(2)] (1; L(OEt)(-) = [Co(η(5)-C(5)H(5)){P(O)(OEt)(2)}(3)](-)) with Et(3)SiH affords [Ru(L(OEt))Cl(2)(NH(3))] (2), whereas that with [Ru(L(OEt))(H)(CO)(PPh(3))] (3) gives the dinuclear imido complex [(L(OEt))Cl(2)Ru(μ-NH)Ru(CO)(PPh(3))(L(OEt))] (4). The imido group in 4 binds to the two ruthenium atoms unsymmetrically with Ru-N distances of 1.818(6) and 1.952(6) ?. The reaction between 1 and 3 at 25 °C in a toluene solution is first order in both complexes with a second-order rate constant determined to be (7.2 ± 0.4) × 10(-5) M(-1) s(-1).  相似文献   

2.
The reaction of [Ti(NR)Cl(2)(py)(3)](R = (t)Bu, p-tolyl, 2,6-C(6)H(3)(i)Pr(2)) with [{Li(bdmpza)(H(2)O)}(4)][bdmpza = bis(3,5-dimethylpyrazol-1-yl)acetate] and [{Li(bdmpzdta)(H(2)O)}(4)][bdmpzdta = bis(3,5-dimethylpyrazol-1-yl)dithioacetate] affords the corresponding complexes [Ti(NR)Cl(kappa(3)-bdmpzx)(py)](x = a, R = (t)Bu 1, p-tolyl 2, 2,6-C(6)H(3)(i)Pr(2) 3; x = dta, R =(t)Bu 4, p-tolyl , 2,6-C(6)H(3)(i)Pr(2) 6), which are the first examples of imido Group 4 complexes stabilized by heteroscorpionate ligands. The solid-state X-ray crystal structure of 1 has been determined. The titanium centre is six-coordinate with three fac-sites occupied by the heteroscorpionate ligand and the remainder of the coordination sphere being completed by chloride, imido and pyridine ligands. The complexes are 1-6 fluxional at room temperature. The pyridine ortho- and meta-proton resonances show evidence of dynamic behaviour for this ligand and variable-temperature NMR studies were carried out in order to study their dynamic behaviour in solution. The complexes [Nb(NR)Cl(3)(py)(2)](R = (t)Bu, p-tolyl, 2,6-C(6)H(3)(i)Pr(2)) reacted with [{Li(bdmpza)(H(2)O)}(4)] and (Hbdmpze)[bdmpze = 2,2-bis(3,5-dimethylpyrazol-1-yl)ethoxide], the latter with prior addition of (n)BuLi, to give the complexes [Nb(NR)Cl(2)(kappa(3)-bdmpzx)](x = a, R =(t)Bu 7, p-tolyl 8, 2,6-C(6)H(3)(i)Pr(2) 9; x = e, R = (t)Bu 10, p-tolyl 11, 2,6-C(6)H(3)(i)Pr(2)) 12 and these are the first examples of imido Group 5 complexes with heteroscorpionate ligands. The structures of these complexes have been determined by spectroscopic methods.  相似文献   

3.
In combination with EtAlCl(2) (Mo : Al = 1 : 15) the imido complexes [MoCl(2)(NR)(NR')(dme)] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (1); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (3); R = R' = Bu(t) (4); dme = 1,2-dimethoxyethane) and [Mo(NHBu(t))(2)(NR)(2)] (R = 2,6-Pr(i)(2)-C(6)H(3) (5); R = Bu(t) (6)) each show moderate TON, activity, and selectivity for the catalytic dimerisation of ethylene, which is influenced by the nature of the imido substituents. In contrast, the productivity of [MoCl(2)(NPh)(2)(dme)] (2) is low and polymerisation is favoured over dimerisation. Catalysis initiated by complexes 1-4 in combination with MeAlCl(2) (Mo : Al = 1 : 15) exhibits a significantly lower productivity. Reaction of complex 5 with EtAlCl(2) (2 equiv.) gives rise to a mixture of products, while addition of MeAlCl(2) affords [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)]. Treatment of 6 with RAlCl(2) (2 equiv.) (R = Me, Et) yields [Mo({μ-N-Bu(t)}AlCl(2))(2)] (7) in both cases. Imido derivatives 1 and 3 react with Me(3)Al and MeAlCl(2) to form the bimetallic complexes [MoMe(2)(N{R}AlMe(2){μ-Cl})(NR')] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (8); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (10)) and [MoMe(2)(N{R}AlCl(2){μ-Cl})(NR')] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (9); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (11)), respectively. Exposure of complex 8 to five equivalents of thf or PMe(3) affords the adducts [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)(L)] (L = thf (12); L = PMe(3) (13)), while reaction with NEt(3) (5 equiv.) yields [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)]. The molecular structures of complexes 5, 9 and 11 have been determined.  相似文献   

4.
A facile method is described for the synthesis of cationic Re(VII) cis oxo imido complexes of the form [Re(O)(NAr)(salpd)+] (salpd = N,N'-propane-1,3-diylbis(salicylideneimine)), 4, [Re(O)(NAr)(saldach)+] (saldach = N,N'-cyclohexane-1,3-diylbis(salicylideneimine)), 5, and [Re(O)(NAr)(hoz)2+] (hoz = 2-(2'-hydroxyphenyl)-2-oxazoline) (Ar = 2,4,6,-(Me)C(6)H(2); 4-(OMe)C(6)H(4); 4-(Me)C(6)H(4); 4-(CF3)C6H4; 4-MeC(6)H(4)SO(2)), 6, from the reaction of oxorhenium(V) [(L)Re(O)(Solv)+] (1-3) and aryl azides under ambient conditions. Unlike previously reported cationic Re(VII) dioxo complexes, these cationic oxo imido complexes can be obtained on a preparative scale, and an X-ray crystal structure of [Re(O)(NMes)(saldach)+], 5a, has been obtained. Despite the multiple stereoisomers that could arise from tetradentate ligation of salen ligands to rhenium, one major isomer is observed and isolated in each instant. The electronic rationalization for stereoselectivity is discussed. Investigation of the mechanism suggests that the reactions of Re(V) with aryl azides proceed through an azido adduct similar to the group 5 complexes of Bergman and Cummins. Treatment of the cationic oxo imido complexes with a reductant (PAr(3), PhSMe, or PhSH) results in oxygen atom transfer (OAT) and the formation of cationic Re(V) imido complexes. [(salpd)Re(NMes)(PPh(3))(+)] (7) and [(hoz)2Re(NAr)(PPh(3))(+)] (Ar = m-OMe phenyl) (9) have been isolated on a preparative scale and fully characterized including an X-ray single-crystal structure of 7. The kinetics of OAT, monitored by stopped-flow spectroscopy, has revealed rate saturation for substrate dependences. The different plateau values for different oxygen acceptors (Y) provide direct support for a previously suggested mechanism in which the reductant forms a prior-equilibrium adduct with the rhenium oxo (ReVII = O<--Y). The second-order rate constants of OAT, which span more than 3 orders of magnitude for a given substrate, are significantly affected by the electronics of the imido ancillary ligand with electron-withdrawing imidos being most effective. However, the rate constant for the most active oxo imido rhenium(VII) is 2 orders of magnitude slower than that observed for the known cationic dioxo Re(VII) [(hoz)2Re(O)(2)(+)].  相似文献   

5.
Reaction of [Ti(NR)Cl2(py)3] (R=tBu or 2,6-iPr2C6H3) with K(2)[COT] (COT=C8H8) or Li2[COT'] (COT'=1,4-C8H6(SiMe3)2) gave the monomeric complexes [Ti(NR)(eta8-COT)] or [Ti(NR)(eta8-COT')], respectively. The pseudo-two coordinate, "pogo stick" geometry for these complexes is unique in both early transition-metal and cyclooctatetraenyl ligand chemistry. In contrast, reaction of [Ti(N-2,6-Me2C6H3)Cl2(py)3] with K2[COT] gave the mu-imido-bridged dimer [Ti2(mu-N-2,6-Me2C6H3)2(eta8-COT)2]. It appears that as the steric bulk of the imido and C8 ring substituents are decreased, dimerisation becomes more favourable. Aryl imido COT complexes were also prepared by imido ligand exchange reactions between anilines and [Ti(NtBu)(eta(8)-COT)] or [Ti(NtBu)(eta(8)-COT')]. The complexes [Ti(NtBu)(eta(8)-COT)], [Ti(N-2,6-iPr2C6H3)2(eta8-COT)] and [Ti2(mu-N-2,6-Me2C6H3)2(eta8-COT)2] have been crystallographically characterised. The electronic structures of both the monomeric and dimeric complexes have been investigated by using density functional theory (DFT) calculations and gas-phase photoelectron spectroscopy. The most striking aspect of the bonding is that binding to the imido nitrogen atom is primarily through sigma and pi interactions, whereas that to the COT or COT' ring is almost exclusively through delta symmetry orbitals. A DFT-based comparison between the bonding in [Ti(NtBu)(eta8-COT)] and the bonding in the previously reported late transition-metal "pogo stick"complexes [Os(NtBu)(eta6-C6Me6)], [Ir(NtBu)(eta5-C5Me5)] and [Ni(NO)(eta5-C5H5)] has also been undertaken.  相似文献   

6.
Berreau LM  Chen J  Woo LK 《Inorganic chemistry》2005,44(21):7304-7306
The imido(meso-tetra-p-tolylporphyrinato)molybdenum(IV) complexes, (TTP)Mo=NR, where R = C6H5 (1a), p-CH3C6H4 (1b), 2,4,6-(CH3)3C6H2 (1c), and 2,6-(i-Pr)2C6H4 (1d), can be prepared by the reaction of (TTP)MoCl2 with 2 equiv of LiNHR in toluene. Upon treatment of the imido complexes with pyridine derivatives, NC5H4-p-X (X = CH3, CH(CH3)2, C[triple bond]N), new six-coordinate complexes, (TTP)Mo=NR.NC5H4-p-X, were observed. The reaction between the molybdenum imido complexes, (TTP)Mo=NC6H5 or (TTP)Mo=NC6H4CH3, and (TTP)Ti(eta2-PhC[triple bond]CPh) resulted in complete imido group transfer and two-electron redox of the metal centers to give (TTP)Mo(eta2-PhC[triple bond]CPh) and (TTP)Ti=NC6H5 or (TTP)Ti=NC6H4CH3.  相似文献   

7.
Reactions of Ti(NMe(2))(2)Cl(2) with a wide range of primary alkyl and arylamines RNH(2) afforded the corresponding 5-coordinate imido titanium compounds Ti(NR)Cl(2)(NHMe(2))(2) (R = (t)Bu (1), (i)Pr (2), CH(2)Ph (3), Ph (4), 2,6-C(6)H(3)Me(2) (5), 2,6-C(6)H(3)(i)Pr(2) (6), 2,4,6-C(6)H(2)F(3) (7), 2,3,5,6-C(6)HF(4) (8), C(6)F(5) (9), 4-C(6)H(4)Cl (10), 2,3,5,6-C(6)HCl(4) (11), 2-C(6)H(4)CF(3) (12), 2-C(6)H(4)(t)Bu (13)). The compounds 1-13 are monomeric in solution but in the solid state form either N-H...Cl hydrogen bonded dimers or chains or perfluorophenyl pi-stacked chains, depending on the imido R-group. The compound 13 was also prepared in a "one-pot" synthesis from RNH(2) and Ti(NMe(2))(4) and Me(3)SiCl. Reaction of certain Ti(NR)Cl(2)(NHMe(2))(2) compounds with an excess of pyridine afforded the corresponding bis- or tris-pyridine analogues [Ti(NR)Cl(2)(py)(x)](y) (x = 3, y = 1; x = y = 2), and the structure of Ti(2)(NC(6)F(5))(2)Cl(2)(mu-Cl)(2)(py)(4) shows pi-stacking of perfluorophenyl rings. Reaction of Ti(NMe(2))(2)Cl(2) with cross-linked aminomethyl polystyrene gave quantitative conversion to the corresponding solid-supported titanium imido complex. This paper represents the first detailed study of how supramolecular structures of imido compounds may be influenced by simple variation of the imido ligand N-substituent.  相似文献   

8.
The heteroatom-substituted imido complexes [(LAu)3(mu-NX)]+ (X = NR2, R = Ph, Me, Bz; X = OH, Cl; L = a phosphine) have been prepared from the reactions of NH2X with [(LAu)3(mu-O)]+. Thermally unstable [(LAu)3(mu-NNMe2)]+ (L = P(p-XC6H4)3, X = H, F, Me, Cl, MeO) decompose to the gold cluster [LAu]6(2+) and tetramethyltetrazene Me2NN=NNMe2. The decomposition is first-order overall with a rate constant that increases with increasing pKa of the phosphine ligand. Activation parameters for the decomposition are deltaH(not equal to) = 99(4) kJ/mol and deltaS(not equal to) = 18.5(5) J/K.mol for L = PPh3 and deltaH(not equal to) = 78(3) kJ/mol and deltaS(not equal to) = -47(2) J/K.mol for L = P(p-MeOC6H4)3. The decomposition of analogous [(LAu)3(mu-NNBz2)]+ produces bibenzyl, indicative of the release of free amino nitrene Bz2NN.  相似文献   

9.
Addition of B(C6H5)3.H2O to U(NtBu)2I2(THF)2 provides U(NtBu)(O)I2(THF)2, a complex with a trans arrangement of the oxo and imido ligands. A DFT study on the Ph3PO adduct, U(NtBu)(O)I2(Ph3PO)2, reveals that there are six bonding orbitals in the O=U=N interaction, much like the bis(imido) N=U=N interaction. However, the calculations suggest that the multiple bonding in the oxo imido complexes is less covalent than that in the bis(imido) analogues.  相似文献   

10.
The bis(imido) uranium(VI)-C(5)H(5) and -C(5)Me(5) complexes (C(5)H(5))(2)U(N(t)Bu)(2), (C(5)Me(5))(2)U(N(t)Bu)(2), (C(5)H(5))U(N(t)Bu)(2)(I)(dmpe), and (C(5)H(5))(2)U(N(t)Bu)(2)(dmpe) can be synthesized from reactions between U(N(t)Bu)(2)(I)(2)(L)(x) (L=THF, x=2; L=dmpe, x=1) and Na(C(5)R(5)) (R=H, Me); these complexes represent the first structurally characterized C(5)H(5)-compounds of uranium(VI) and they further highlight the differences between UO(2)(2+) and the bis(imido) fragment.  相似文献   

11.
Azobenzene-conjugated mononuclear and dinuclear terpyridyl complexes of Co(II), Co(III), and Fe(II) were synthesized, and their photoisomerization behavior was investigated. Co(II) and Co(III) complexes, [tpyCo(tpy-AB)]X(n) and [(Cotpy)(2)(tpy-AB-tpy)]X(n) (tpy-AB = C(15)N(3)H(10)-C(6)H(4)-N=NC(6)H(5), tpy-AB-tpy = C(15)N(3)H(10)-C(6)H(4)-N=NC(6)H(4)-C(15)N(3)H(10), X = PF(6) or BPh(4)), exhibit trans-to-cis photoisomerization by irradiation at 366 nm, and this behavior is dependent on solvents and counterions. For the Co(II) complexes, BPh(4) salts undergo cis-to-trans isomerization in propylene carbonate by both photoirradiation with visible light (435 nm) and heat, indicating that reversible trans-cis isomerization has occurred. [Co(tpy-AB)(2)](BPh(4))(2) shows a two-step trans-to-cis isomerization process. The trans-cis isomerization behavior of Co(III) complexes was observed only in the solvents with a low donor number such as 1,2-dichloroethane. Fe(II) complexes, [tpyFe(tpy-AB)]X(n) (X = PF(6) or BPh(4)), exhibit slight trans-to-cis photoisomerization due to the energy transfer from the azobenzene moiety to Fe(tpy)(2) moieties.  相似文献   

12.
Alkylation of (ArNHCH2CH2){(2-C5H4N)CH2}NH with RX [RX = MeI, 4-CH2=CH(C6H4)CH2Cl) and (2-C5H5N)CH2Cl] in the presence of base has allowed access to the sterically demanding multidentate nitrogen donor ligands, {(2,4,6-Me3C6H2)NHCH2CH2}{(2-C5H4N)CH2}NMe (L1), {(2,6-Me3C6H3)NHCH2CH2}{(2-C5H4N)CH2}NCH2(C6H4)-4-CH=CH2 (L2) and (ArNHCH2CH2){(2-C5H4N)CH2}2N (Ar = 2,4-Me2C6H3 L3a, 2,6-Me2C6H3 L3b) in moderate yield. L3 can also be prepared in higher yield by the reaction of (NH2CH2CH2){(2-C5H4N)CH2}2N with the corresponding aryl bromide in the presence of base and a palladium(0) catalyst. Treatment of L1 or L2 with MCl2 [MCl2 = CoCl2.6H2O or FeCl2(THF)1.5] in THF affords the high spin complexes [(L1)MCl2](M = Co 1a, Fe 1b) and [(L2)MCl2](M = Co 2a, Fe 2b) in good yield, respectively; the molecular structure of reveals a five-coordinate metal centre with bound in a facial fashion. The six-coordinate complexes, [(L3a)MCl2](M = Co 3a, Fe 3b, Mn 3c) are accessible on treatment of tripodal L3a with MCl2. In contrast, the reaction with the more sterically encumbered leads to the pseudo-five-coordinate species [(L3b)MCl2](M = Co 4a, Fe 4b) and, in the case of manganese, dimeric [(L3b)MnCl(mu-Cl)]2 (4c); in 4a and 4b the aryl-substituted amine arm forms a partial interaction with the metal centre while in 4c the arm is pendant. The single crystal X-ray structures of , 1a, 3b.MeCN, 3c.MeCN, 4b.MeCN and 4c are described as are the solution state properties of 3b and 4b.  相似文献   

13.
The imido complex (dtbpe)Ni(N(2,6-(CHMe2)2C6H3)) reacts with CO and CNCH2Ph with addition at the Ni-N bond to give (dtbpe)Ni(C,N:eta 2-C(O)N(2,6-(CHMe2)2C6H3)) and (dtbpe)Ni(C,N:eta 2-C(NCH2Ph)N(2,6-(CHMe2)2C6H3)); both complexes react further with CO to liberate the isocyanate and carbodiimide ligands with formation of (dtbpe)Ni(CO)2.  相似文献   

14.
Dirhodium amido complexes [(Cp*Rh)2(mu2-NHPh)(mu2-X)] (X = NHPh (2), Cl (3), OMe (4); Cp* = eta5-C5Me5) were prepared by chloride displacement of [Cp*Rh(mu2-Cl)]2 (1) and have been used as precursors to a dirhodium imido species [Cp*Rh(mu2-NPh)RhCp*]. The imido species can be trapped by PMe3 to give the adduct [Cp*Rh(mu2-NPh)Rh(PMe3)Cp*] (5) and undergoes a formal [2 + 2] cycloaddition reaction with unactivated alkynes to give the azametallacycles [Cp*Rh(mu2-eta2:eta3-R1CCR2NPh)RhCp*] (R1 = R2 = Ph (6a), R1 = H, R2 = t-Bu (6b), R1 = H, R2 = p-tol (6c)). Isolation of a relevant unsaturated imido complex [Cp*Rh(mu2-NAr)RhCp*] (7) was achieved by the use of a sterically hindered LiNHAr (Ar = 2,6-diisopropylphenyl) reagent in a metathesis reaction with 1. X-ray structures of 2, 6a, 7 and the terminal isocyanide adduct [Cp*Rh(mu2-NAr)Rh(t-BuNC)Cp*] (8) are reported.  相似文献   

15.
The complexes [(eta5-RC5H4)Ru(CH3CN)3]PF6(R = H, CH3) react with DCVP (DCVP = Cy2PCH=CH2) at room temperature to produce the phosphaallyl complexes [(eta5-C5H5)Ru(eta1-DCVP)(eta3-DCVP)]PF6 and [(eta5-MeC5H4)Ru(eta1-DCVP)(eta3-DCVP)]PF6. Both compounds react with a variety of two-electron donor ligands displacing the coordinated vinyl moiety. In contrast, we failed to prepare the phosphaallyl complexes [(eta5-C5Me5)Ru(eta1-DCVP)(eta3-DCVP)]PF6, [(eta5-MeC5H4)Ru(CO)(eta3-DCVP)]PF6 and [(eta5-C5Me5)Ru(CO)(eta3-DPVP)]PF6(DPVP = Ph2PCH=CH2).The compounds [(eta5-MeC5H4)Ru(CO)(CH3CN)(DPVP)]PF6 and [(eta5-C5Me5)Ru(CO)(CH3CN)(DPVP)]PF6 react with DMPP (3,4-dimethyl-1-phenylphosphole) to undergo [4 + 2] Diels-Alder cycloaddition reactions at elevated temperature. Attempts at ruthenium catalyzed hydration of phenylacetylene produced neither acetophenone nor phenylacetaldehyde but rather dimers and trimers of phenylacetylene. The structures of the complexes described herein have been deduced from elemental analyses, infrared spectroscopy, 1H, 13C{1H}, 31P{1H} NMR spectroscopy and in several cases by X-ray crystallography.  相似文献   

16.
The tris(imido)methylrhenium complex CH3Re(NAd)3 (1a, Ad = 1-adamantyl) reacts with H2O to give CH3Re(NAd)2O (2a) and AdNH2. The resulting di(imido)oxo species can further react with another molecule of H2O to generate CH3Re(NAd)O2 (3a). The kinetics of these reactions have been studied by means of 1H NMR and UV-vis spectroscopies. The second-order rate constant for the reaction of 1a with H2O at 298 K in C6H6 is 3.3 L mol-1 s-1, which is much larger than the value 1 x 10(-4) L mol-1 s-1 obtained for the reaction between CH3Re(NAr)3 (1b, Ar = 2,6-diisopropylphenyl) and H2O in CH3CN at 313 K. Both 1a and 1b react with H2S to produce the rhenium(VII) sulfide, (CH3Re(NR)2)2(mu-S)2 (4a, R = Ad; 4b, R = Ar), with second-order rate constants of 17 and 1.6 x 10(-4) L mol-1 s-1 in C6H6 and CH3CN, respectively. Complex 4b has been structurally characterized. The crystal data are as follows: space group C2/c, a = 30.4831 (19) A, b = 10.9766 (7) A, c = 18.1645 (11) A, beta = 108.268(1) degrees, V = 5771.5 (6) A3, Z = 4. The reaction between CH3Re(NAr)2O (2b) and H2S also yields the dinuclear compound 4b. Unlike 1b, 1a reacts with aniline derivatives to give mixed imido rhenium complexes.  相似文献   

17.
Reactions of the lithiated diamido-pyridine or diamido-amine ligands Li(2)N(2)N(py) or Li(2)N(2)N(am) with [W(NAr)Cl(4)(THF)] (Ar = Ph or 2,6-C(6)H(3)Me(2); THF = tetrahydrofuran) afforded the corresponding imido-dichloride complexes [W(NAr)(N(2)N(py))Cl(2)] (R = Ph, 1, or 2,6-C(6)H(3)Me(2), 2) or [W(NAr)(N(2)N(am))Cl(2)] (R = Ph, 3, or 2,6-C(6)H(3)Me(2), 4), respectively, where N(2)N(py) = MeC(2-C(5)H(4)N)(CH(2)NSiMe(3))(2) and N(2)N(am) = Me(3)SiN(CH(2)CH(2)NSiMe(3))(2). Subsequent reactions of 1 with MeMgBr or PhMgCl afforded the dimethyl or diphenyl complexes [W(NPh)(N(2)N(py))R(2)] (R = Me, 5, or Ph, 6), respectively, which have both been characterized by single crystal X-ray diffraction. Reactions of Li(2)N(2)N(py) or Li(2)N(2)N(am) with [Mo(NR)(2)Cl(2)(DME)] (R = (t)Bu or Ph; DME = 1,2-dimethoxyethane) afforded the corresponding bis(imido) complexes [Mo(NR)(2)(N(2)N(py))] (R = (t)Bu, 7, or Ph, 8) and [Mo(N(t)Bu)(2)(N(2)N(am))] (9).  相似文献   

18.
One-pot reactions of V(NMe2)4 with a range of primary alkyl- and arylamines RNH2 and Me3SiCl afforded the corresponding five-coordinate vanadium(4+) imido compounds V(NR)Cl2(NHMe2)2 [R = 2,6-C6H3(i)Pr2 (1a, previously reported), 2-C6H4(t)Bu (1b), 2-C6H4CF3 (1c), (t)Bu (1d), Ad (Ad = adamantyl, 1e)]. The crystal structures of 1b (two diamorphic forms) and 1c featured N-H...Cl hydrogen-bonded chains. Reaction of 1a-e with the neutral face-capping, N3 donor ligands TACN (TACN = 1,4,7-trimethyltriazacyclononane) or TPM [TPM = tris(3,5-dimethylpyrazolyl)methane] gave the corresponding six-coordinate complexes V(NR)(TACN)Cl2 (2a-e) and V(NR)(TPM)Cl2 (3a-e). The X-ray structures of 2b, 2c, 2d, 3b, 3c, and 3e were determined. When activated with methylaluminoxane, certain of the complexes V(NR)(TPM)Cl2 (3) formed moderately active ethylene polymerization catalysts, whereas none of the compounds V(NR)(TACN)Cl2 (2) were active.  相似文献   

19.
Low temperature in situ UV irradiation of [(eta(5)-C(5)H(5))Co(C(2)H(4))(2)] in the presence of silanes enables the characterisation of unstable fluxional Co(III) silyl hydride complexes [(eta(5)-C(5)H(5))Co(SiR(3))(H)(C(2)H(4))] (SiR(3) = SiEt(3), SiMe(3) or SiHEt(2)) by NMR spectroscopy; the reaction of [Co(eta(5)-C(5)H(5))(C(2)H(4))(2)] with HSiR(3) proceeds thermally to reach an equilibrium when SiR(3) = Si(OMe)(3) or SiClMePh.  相似文献   

20.
1 INTRODUCTION Constructing higher nuclearity clusters with well-defined dimensions and structures provide a rather active field of chemistry with potential applications in areas including nanotechnology, molecular recognition and catalysis[1~4]. A continuing effort has been directed toward developing a better methodology for systematic synthesis of supracluster compounds through molecular design [5,6]. On the basis of extensive investigation on the metal exchange reaction in cluster com…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号