首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nano-sized carbon fibers were prepared by using electrospinning, and their electrochemical properties were investigated as a possible electrode material for use as an electric double-layer capacitor (EDLC). To improve the electrode capacitance of EDLC, we implemented a three-step optimization. First, metal catalyst was introduced into the carbon fibers due to the excellent conductivity of metal. Vanadium pentoxide was used because it could be converted to vanadium for improved conductivity as the pore structure develops during the carbonization step. Vanadium catalyst was well dispersed in the carbon fibers, improving the capacitance of the electrode. Second, pore-size development was manipulated to obtain small mesopore sizes ranging from 2 to 5 nm. Through chemical activation, carbon fibers with controlled pore sizes were prepared with a high specific surface and pore volume, and their pore structure was investigated by using a BET apparatus. Finally, polyacrylonitrile was used as a carbon precursor to enrich for nitrogen content in the final product because nitrogen is known to improve electrode capacitance. Ultimately, the electrospun activated carbon fibers containing vanadium show improved functionality in charge/discharge, cyclic voltammetry, and specific capacitance compared with other samples because of an optimal combination of vanadium, nitrogen, and fixed pore structures.  相似文献   

2.
The molecular mechanisms of aqueous solvent penetration into a flat nanopore with hydrophobic structureless walls containing a Na+Cl? ion pair with nonfixed distance between ions is studied by computer simulations. A detailed many-body polycenter model of intermolecular interactions calibrated with respect to experimental data for the free energy of attachment of water vapor molecules and quantum-chemical calculations in clusters is used. The ion pair hydration results in its decomposition. Drawing the molecules into the gap between ions makes easier penetration of solvent and filling of the nanopore with electrolyte. The ion-pair dissociation is accompanied by dramatic changes in the chemical potential of molecules and electric properties of the whole system. The thermodynamic characteristics of decomposition are stable as regards variations in the pore width. The post-decomposition electric polarizability demonstrates strong anisotropy associated with the nanopore flatness.  相似文献   

3.
Using ZnCl2 activation we prepared a series of carbon electrodes from waste coffee grounds to study the effect of mesopores on double-layer capacitance in a tetraethyl ammonium tetrafluoroborate/acetonitrile electrolyte. The activated carbon with the largest mesopore volume achieved an energy density of 34 Wh kg?1 at low current loads, and significantly retained an energy density of 16.5 Wh kg?1 and specific capacitance of more than 100 F g?1 at fast charge–discharge rates (20 A g?1). The effect of mesopores on capacitance at fast charge–discharge rates is discussed.  相似文献   

4.
The research on electrochemical double layer capacitors (EDLC), also known as supercapacitors or ultracapacitors, is quickly expanding because their power delivery performance fills the gap between dielectric capacitors and traditional batteries. However, many fundamental questions, such as the relations between the pore size of carbon electrodes, ion size of the electrolyte, and the capacitance have not yet been fully answered. We show that the pore size leading to the maximum double-layer capacitance of a TiC-derived carbon electrode in a solvent-free ethyl-methylimmidazolium-bis(trifluoro-methane-sulfonyl)imide (EMI-TFSI) ionic liquid is roughly equal to the ion size (approximately 0.7 nm). The capacitance values of TiC-CDC produced at 500 degrees C are more than 160 F/g and 85 F/cm(3) at 60 degrees C, while standard activated carbons with larger pores and a broader pore size distribution present capacitance values lower than 100 F/g and 50 F/cm(3) in ionic liquids. A significant drop in capacitance has been observed in pores that were larger or smaller than the ion size by just an angstrom, suggesting that the pore size must be tuned with sub-angstrom accuracy when selecting a carbon/ion couple. This work suggests a general approach to EDLC design leading to the maximum energy density, which has been now proved for both solvated organic salts and solvent-free liquid electrolytes.  相似文献   

5.
Anodic dissolution of steel 40Kh in a sulfuric acid electrolyte containing Cl ions is studied by analyzing the experimental dependence of anodic current on the specimen potential. The dependences of the critical passivation current, anodic current at –0.15 to 0.55 V (Ag/AgCl), and passivation current on the concentration of Cl ions (c) are determined. The maximum value of c for the passivation at 0.55–1.6 V (Ag/AgCl) is refined. The dependence of the specimens steady-state potential on c is determined and its decrease is related to an abrupt increase in the anodic current at the passivation potentials.Translated from Elektrokhimiya, Vol. 41, No. 3, 2005, pp. 371–374.Original Russian Text Copyright © 2005 by Ivashkin.  相似文献   

6.
7.
The reduction of microcrystalline C60 fullerene, adhered at a carbon electrode and immersed in aqueous electrolyte, has been studied under various voltammetric conditions. This work reports mainly the voltammetric studies carried out principally in electrolyte containing potassium ions. Comparison of adherence techniques, such as solvent casting and mechanical transfer methods, are made to assess if the type of adhered techniques has any significant influence on the observed electrochemistry. The solvent casting method is found to produce three peaks in the potential for C600/n- redox couple as compared to a single and large peak produced when a mechanical transfer technique is employed. When the reduction potential of microcrystalline C60 in the presence of K+ is compared with other cations, such as Li, Na, Rb and Cs, it is observed that the shift of reduction potential follows the change in the hydration energy in the order Cs>Rb>K>Na>Li. In a mixed electrolyte study of CsCl/KCl, the reduction potential and peak shape of C600/n- redox couple during cyclic voltammetry is observed to change with concentration of the cations and the observed electrochemistry can be attributed to a cation-exchange mechanism. The reduction of C60 is irreversible in aqueous electrolyte containing alkaline cations as the re-oxidation process does not produce any observed electro-activity. Evidence of the formation of a passive coating of K n C60 fulleride, which does not appear to undergo dissolution is obtained under cyclic voltametric conditions. This coating remains electrochemically active in the presence of tetrabutylammonium ions in acetonitrile. Scan rate, chronocoulometric, and scanning electron microscopic studies provide evidence of the presence of a surface process involving solid–solid transformation.  相似文献   

8.
Sustained oscillations in the concentration of free fluoride ions can be generated when the BrO3--SO32--Mn(II) oscillator is coupled either to Al3+-F- complex formation or to the Ca2+-F- precipitation process in a flow reactor. By careful analysis of the relevant equilibria and optimization of the reactant concentrations, one can obtain [F-] oscillations of several orders of magnitude as measured with an ion-selective electrode. The BrO3--SO32--Mn(II)-Al(NO3)3-NaF system also exhibits bistability, that is, simultaneously stable steady states of high and low [F-].  相似文献   

9.
10.
11.
The adsorption of quaternized poly(vinylpyridine) (QPVP) on controlled pore glass (CPG) size, over the ionic strength range 0.001-0.5 M was found to display nonmonotonic behavior as a function of pore size. Both adsorption kinetics and ionic strength effects deviated dramatically from behavior typical of adsorption on flat surfaces when the ratio of the pore radius Rp to the polymer hydrodynamic radius Rh became smaller than ca. 2. Ionic strength enhancement of adsorption for small pore sizes was observed at much higher salt concentrations than is typical for polycation adsorption on flat surfaces. The amount of polymer adsorbed per unit surface area of glass GammaA, in 0.5 M NaCl, exhibited a shallow maximum at Rp/Rh approximately 5. Since the value of GammaA for small pore size CPG is strongly depressed by the large surface area, an alternative and more interesting observation is that the amount of polymer adsorbed per gram of CPG, Gammaw, displays a strong maximum when Rp is equal to or slightly smaller than Rh. The efficiency with which QPVP binds anionic micelles to (negatively charged) CPG (grams of surfactant/grams of QPVP) increases strongly with diminishing pore size, indicating that the configuration of polycation bound to small pores favors micelle binding. Since the micelles are larger than small pores, the results indicate that when Rp < Rh, adsorbed polycation molecules reside only partially within the pore. The results of this study are supported by simulations of polyelectrolytes within cylindrical cavities.  相似文献   

12.
Ordered silicas with large (9-15 nm), uniform, cagelike mesopores were synthesized under acidic aqueous conditions from tetraethyl orthosilicate in the presence of sodium chloride using poly(ethylene oxide)-poly(butylene oxide)-poly(ethylene oxide) triblock copolymer B50-6600 (EO39BO47EO39, Dow Chemicals) as a supramolecular template. Except for the use of NaCl in our case, the synthesis mixture composition was the same as that originally reported by Zhao et al. for the synthesis of FDU-1 silica, which was later shown to exhibit a cubic close-packed (Fm3m) structure with stacking faults related to the occurrence of hexagonal close-packed stacking sequences. The copolymer-templated silicas were formed at room temperature and in most cases were subjected to the hydrothermal treatment at 373 or 393 K. The calcined materials were characterized using small-angle X-ray scattering (SAXS) and nitrogen and argon adsorption at 77 K. SAXS patterns were generally similar to those reported for FDU-1 silica, indicating the cubic close-packed (Fm3m) structure, but the presence of stacking faults characteristic of a hexagonal close-packed structure cannot be precluded. The addition of the salt was found to significantly narrow the pore size distributions and to improve the uniformity of entrances to the cagelike mesopores, whereas the pore diameter, specific surface area, and pore volume were similar (in most cases slightly lower) to those for FDU-1 silicas obtained in the absence of NaCl. The materials synthesized in the presence of NaCl also appeared to have better resolved SAXS patterns. The feasibility of tailoring the pore cage diameter (from approximately 9.5 to 14.5 nm) and pore entrance diameter (from below 4 to approximately 8 nm) simply by adjusting the hydrothermal treatment temperature and time was demonstrated, indicating that these simple and convenient ways of structural design of cagelike mesopores are operative in the case of syntheses in the presence of inorganic salts.  相似文献   

13.
The electric double layer capacitance for a hard sphere ion-dipole system in the neighbourhood of a plane charged wall is calculated in the mean field approximation. To order ka the capacitance predicts the same structural features as the MSA capacitance.  相似文献   

14.
In this work, the characterization of Activated Carbons (AC) by using the independent pore models is discussed, with special emphasis on the issue of how the assumed pore geometry can affect the resulting Pore Size Distribution (rPSD) and on the problem of the unicity of the PSD when different probe molecules are used in adsorption experiments. A theoretical test was performed using virtual solids based in the so-called Mixed Geometry Model (MGM) (Azevedo et al. 2010). The MGM uses a kernel of adsorption isotherms generated by GCMC for different pore sizes and two pore geometries: slit and triangular. The adsorption isotherms of a virtual MGM solid were fitted with both the traditional Slit Geometry Model (SGM) and the Mixed Geometry Model (MGM). It is demonstrated that, by assuming a different pore geometry model from that of the real sample, different PSDs may be obtained by fitting adsorption isotherms of different probe gases. Finally, experimental results are shown which both point toward the MGM as an acceptable extension of the SGM and confirm that the MGM is a closer representation of the actual porous structure of most activated carbons.  相似文献   

15.
16.
The behavior of excited PyS with the quencher NO2 in an ionomer solution of anion-conductive resin and in the nanochannels of an anion-conductive membrane was investigated by luminescence quenching measurements. Compared with the behavior of an excited Ru(bpy)32+-MV2+ system in the presence of Nafion, the mobility of ions in the nanochannels of an ion-conductive resin is proved to depend on ion size, structure of nanochannel and channel medium.  相似文献   

17.
In this work we performed nonequilibrium Brownian dynamics (NEBD) computer simulations of highly charged colloidal particles in diluted suspension under a parabolic flow in cylindrical pores. The influence of charged and neutral cylindrical pores on the structure and rheology of suspensions is analyzed. A shear-induced disorder-order-disorder-like transition was monitored for low shear rates and small pore diameters. We calculate the concentration profiles, axial distribution functions, and axial-angular pair correlation functions to determine the structural properties at steady state for a constant shear flow for different pore sizes and flow strengths. Similar behavior has been observed in a planar narrow channel in the case of charged interacting colloidal particles (M.A. Valdez, O. Manero, J. Colloid Interface Sci. 190 (1997) 81). The mobility of the particles in the radial direction decreases rapidly with the flow and becomes practically frozen. The flow exhibits non-Newtonian shear thinning behavior due to interparticle interactions and particle-wall interaction; the apparent viscosity is lower as the pore diameter decreases, giving rise to an apparent slip in the colloidal suspension. The calculated slip velocity was higher than that obtained in a rectangular slit under shear flow.  相似文献   

18.
A porous coordination polymer (PCP) with immobilization of sodium cations on the pore surface has been synthesized, by employing a bifunctional carboxylate/sulfonate ligand, and structurally characterized. The porous framework with 1D channels of the dimension of 4.9 x 4.9 A2 shows high thermal stability ( approximately 330 degrees C), affording Type I adsorption isotherms for CO2, acetone, and benzene. The chemical shift of 13C NMR and characteristic adsorption energy (betaE0) of acetone adsorbed in this compound represent the Lewis acidity of this framework.  相似文献   

19.
Experiments carried out by Stenkamp et al. [Stenkamp, V. S.; McGuiggan, P.; Berg, J. C. Langmuir 2001, 17, 637.] have shown that polystyrene latexes can be restabilized at sufficiently high electrolyte concentrations in the presence of an amphiphilic block copolymer [poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO)] At even higher electrolyte concentrations, the systems can again be destabilized. The present paper attempts to explain the restabilization through the dominance of steric interactions and the destabilization through the dominance of depletion interactions. Because of salting out, as the concentration of electrolyte increases, the polymer molecules are increasingly precipitated onto the surface of the latex particles and, at sufficiently high electrolyte concentrations, form, in addition, aggregates. The precipitation onto the latex particles generates steric repulsion, which is responsible for the restabilization, whereas the formation of aggregates generates depletion interactions, which are responsible for destabilization.  相似文献   

20.
The pore connectivity, pore size distribution and pore spatial distribution of the porous structure of native and silanized silica particles were determined by matching the experimental nitrogen sorption data with the theoretical results obtained from pore network model simulations. The agreement between theory and experiment is found to be good. The results clearly indicate that the deposition of the silane layer to the pore surfaces of the native silica particles produces a silanized silica particle with a mean pore diameter and pore connectivity smaller than that of the native silica particle. Furthermore, the evaluation of the pore diffusivity of ribonuclease under unretained conditions shows that the lower values of the pore connectivity found in the samples of silanized silica particles, when compared with the values of the pore connectivity obtained for the native silica particles, increase the diffusional mass transfer resistance within the porous structure of the silanized silica particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号