首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed the finite size scaling method to treat the criticality of Shannon-information entropy for any given quantum Hamiltonian. This approach gives very accurate results for the critical parameters by using a systematic expansion in a finite basis set. To illustrate this approach we present a study to estimate the critical exponents of the Shannon-information entropy S approximately (lambda-lambda(c))(alpha(S) ), the electronic energy E approximately (lambda-lambda(c))(alpha(E) ), and the correlation length xi approximately mid R:lambda-lambda(c)mid R:(-nu) for atoms with the variable lambda=1/Z, which is the inverse of the nuclear charge Z. This was realized by approximating the multielectron atomic Hamiltonian with a one-electron model Hamiltonian. This model is very accurate for describing the electronic structure of the atoms near their critical points. For several atoms in their ground electronic states, we have found that the critical exponents (alpha(E),nu,alpha(S)) for He (Z=2), C (Z=6), N (Z=7), F (Z=9), and Ne (Z=10), respectively, are (1, 0, 0). At the critical points lambda(c)=1/Z(c), the bound state energies become absorbed or degenerate with continuum states and the entropies reach their maximum values, indicating a maximal delocalization of the electronic wave function.  相似文献   

2.
We present finite-size scaling calculations of the critical parameters for binding an electron to a finite linear quadrupole field. This approach gives very accurate results for the critical parameters by using a systematic expansion in a finite basis set. The model Hamiltonian consists of a charge Q located at the origin of the coordinates and k charges -Q/k located at distances R(i), i=1, em leader,k. After proper scaling of distances and energies, the rescaled Hamiltonian depends only on one free parameter q=QR. Two different linear charge configurations with q>0 and q<0 are studied using basis sets in both spherical and prolate spheroidal coordinates. For the case with q>0, the finite size scaling calculations give an extrapolated critical value of q(c)=1.469 70+/-0.000 05 a.u. by using a basis set with prolate spheroidal coordinates. For the quadrupole case with q<0, we obtained an extrapolated critical value of mid R:q(c)mid R:=3.982 51+/-0.000 01 a.u. for stable quadrupole bound anions. The corresponding critical exponent for the ground state energy alpha=1.9964+/-0.0005, with E approximately (q-q(c))(alpha).  相似文献   

3.
The finite-size scaling analysis method is applied to study the phase transition of a self-avoiding walking polymer chain with spatial nearest-neighbor ferromagnetic Ising interaction on the simple cubic lattice. Assuming the scaling M2(T,n) = n(-2beta/nu)[phi0 + phi1n(1/nu)(T-T(c)) + O(n(2/nu)(T-T(c))2)] with the square magnetization M2 as the order parameter and the chain length n as the size, we estimate the second-order phase-transition temperature T(c) = 1.784 J/k(B) and critical exponents 2beta/nu approximately 0.668 and nu approximately 1.0. The self-diffusion constant and the chain dimensions (R2) and (S2) do not obey such a scaling law.  相似文献   

4.
The critical adsorption of self-avoiding polymer chain in a simple cubic lattice onto a flat surface is studied with Monte Carlo simulations. The dependence of number of surface contacts M on chain length N and polymer-surface interaction epsilon is investigated by a finite-size scaling approach. We estimate the critical adsorption point epsilon(c)=0.291+/-0.002 and the exponent phi=0.54+/-0.01. The asymptotic behaviors M proportional variant N for epsilon>epsilon(c) and M proportional variant N(0) for epsilon相似文献   

5.
The critical behavior of the Widom-Rowlinson [J. Chem. Phys. 52, 1670 (1970)] is studied in d = 3 dimensions by means of grand canonical Monte Carlo simulations. The finite-size scaling approach of Kim et al. [Phys. Rev. Lett. 91, 065701 (2003)] is used to extract the order parameter and the coexistence diameter. It is demonstrated that the critical behavior of the diameter is dominated by a singular term proportional to t(1-alpha), with t the relative distance from the critical point, and alpha the critical exponent of the specific heat. No sign of a term proportional to t(2beta) could be detected, with beta the critical exponent of the order parameter, indicating that pressure mixing in this model is small. The critical density is measured to be rhosigma3 = 0.7486 +/- 0.0002, with sigma the particle diameter. The critical exponents alpha and beta, as well as the correlation length exponent nu, are also measured and shown to comply with d = 3 Ising criticality.  相似文献   

6.
A coarse-grained model of a self-avoiding tethered membrane with hexagonal coordination, embedded in three-dimensional space, is studied by means of extensive Monte Carlo computer simulations. The simulations are performed at various temperatures for membranes with linear size 5< or =L< or =50. We find that the membrane undergoes several folding transitions from a high-temperature flat phase to multiple-folded structure as the temperature is steadily decreased. Using a suitable order parameter and finite size scaling analysis, these phase transitions are shown to be of first order. The equilibrium shape of the membranes is analyzed by calculating the eigenvalues lambda(max) (2)> or =lambda(med) (2)> or =lambda(min) (2) of the inertia tensor. We present a systematic finite size scaling analysis of the radius of gyration and the eigenvalues of the inertia tensor at different phases of the observed folding transitions. In the high-temperature flat phase, the radius of gyration R(g) grows with the linear size of the membrane L as R(g) proportional to L(nu), where the exponent nu is approximately equal to 1.0. The eigenvalues of the inertia tensor scale as lambda(max) proportional to lambda(med) proportional to L(nu) and lambda(min) proportional to L(nu(min) ), whereby the roughness exponent nu(min) is approximately equal to 0.7. We also find that the time tau(R) of a self-avoiding membrane to diffuse a distance R(g) scales as tau(R) proportional to L(2nu+2), which is in good agreement with the theoretical predictions.  相似文献   

7.
We present finite size scaling calculations of the critical parameters for binding two electrons to a finite linear dipole field. This approach gives very accurate results for the critical parameters by using a systematic expansion in a finite basis set. A complete ground state stability diagram for the dipole-bound dianion is obtained using accurate variational and finite size scaling calculations. We also study the near threshold behavior of the ground state energy by calculating its critical exponent.  相似文献   

8.
在巨正则系综下对阱宽为λ=1.5,链长分别为4、8、16的方阱链状流体实施Monte Carlo模拟,采用建立在完整标度基础上的无偏的Q-参数方法,通过histogram reweighting技术以及有限尺寸标度理论得到了热力学极限下该系列流体的临界温度和临界密度.模拟结果表明,方阱链流体的临界温度随着链长的增加而升高.并且不同链长方阱流体的临界温度均低于已报道的结果.由于本文所采用的完整标度的无偏性,我们估计的临界点更加准确.并且流体的临界温度与链长之间的关系与Flory-Huggins理论相一致.我们还预测了无限链长方阱流体的临界温度,比已有结果略高.  相似文献   

9.
Molecular dynamics simulations were used to study the conformational dynamics of a bead-spring model polymer in an explicit solvent under good solvent conditions. The dynamics of the polymer chain were investigated using an analysis of the time autocorrelation functions of the Rouse coordinates of the polymer chain. We have investigated the variation of the correlation functions with polymer chain length N, solvent density rho, and system size. The measured initial decay rates gamma(p) of the correlation functions were compared with the predictions from a theory of polymer dynamics which uses the Oseen tensor to describe hydrodynamic interactions between monomers. Over the range of chain lengths considered (N = 30-60 monomers), the predicted scaling of gamma(p) proportional to N(-3nu) was observed at high rho, where nu is the polymer scaling exponent. The predicted gamma(p) are generally higher than the measured values. This discrepancy increases with decreasing rho, as a result in the breakdown in the conditions required for the Oseen approximation. The agreement between theory and simulation at high rho improves considerably if the theoretical expression for gamma(p) is modified to avoid sum-to-integral approximations, and if the values of (R(p)2), which are used in the theory, are taken directly from the simulation rather than being calculated using approximate scaling relations. The observed finite-size scaling of gamma(p) is not quantitatively consistent with the theoretical predictions.  相似文献   

10.
A symmetrical binary, A+B Lennard-Jones mixture is studied by a combination of semi-grand-canonical Monte Carlo (SGMC) and molecular dynamics (MD) methods near a liquid-liquid critical temperature T(c). Choosing equal chemical potentials for the two species, the SGMC switches identities (A-->B-->A) to generate well-equilibrated configurations of the system on the coexistence curve for TT(c). A finite-size scaling analysis of the concentration susceptibility above T(c) and of the order parameter below T(c) is performed, varying the number of particles from N=400 to 12 800. The data are fully compatible with the expected critical exponents of the three-dimensional Ising universality class. The equilibrium configurations from the SGMC runs are used as initial states for microcanonical MD runs, from which transport coefficients are extracted. Self-diffusion coefficients are obtained from the Einstein relation, while the interdiffusion coefficient and the shear viscosity are estimated from Green-Kubo expressions. As expected, the self-diffusion constant does not display a detectable critical anomaly. With appropriate finite-size scaling analysis, we show that the simulation data for the shear viscosity and the mutual diffusion constant are quite consistent both with the theoretically predicted behavior, including the critical exponents and amplitudes, and with the most accurate experimental evidence.  相似文献   

11.
Two different methods for the evaluation of overlap integrals of B functions with different scaling parameters are analyzed critically. The first method consists of an infinite series expansion in terms of overlap integrals with equal scaling parameters [14]. The second method consists of an integral representation for the overlap integral which has to be evaluated numerically. Bhattacharya and Dhabal [13] recommend the use of Gauss-Legendre quadrature for this purpose. However, we show that Gauss-Jacobi quadrature gives better results, in particular for larger quantum number. We also show that the convergence of the infinite series can be improved if suitable convergence accelerators are applied. Since an internal error analysis can be done quite easily in the case of an infinite series even if it is accelerated, whereas it is very costly in the case of Gauss quadratures, the infinite series is probably more efficient than the integral representation. Overlap integrals of all commonly occurring exponentially declining basis functions such as Slater-type functions, can be expressed by finite sums of overlap integrals of B functions, because these basis functions can be represented by linear combinations of B functions.Dedicated to Professor J. Koutecký on the occasion of his 65th birthday  相似文献   

12.
13.
The critical behavior of square-well dimer fluid has been investigated using grand canonical ensemble Monte Carlo simulations combined with a histogram reweighting technique, hyper-parallel tempering and finite-size scaling. The critical temperature and density obtained are T(c)*=1.5495±0.0009 and ρ(c)*=0.1473±0.0007, which are 2.5% lower and 5.2% higher than previous results. Coexistence curves both near to and far from the critical point were obtained. The vapor-liquid equilibrium data far from the critical point are consistent with previous results. Simulation results show that the contribution of |t|(1-α) to the coexistence diameter of square-well dimer fluid dominates the critical behavior and the contribution of |t|(2β) is larger than for a hard-core square-well fluid.  相似文献   

14.
We present an innovative, multiscale computational approach to probe the behaviour of polymer–clay nanocomposites (PCNs). Our modeling recipe is based on 1) quantum/force‐field‐based atomistic simulation to derive interaction energies among all system components; 2) mapping of these values onto mesoscopic bead–field (MBF) hybrid‐method parameters; 3) mesoscopic simulations to determine system density distributions and morphologies (i.e., intercalated versus exfoliated); and 4) simulations at finite‐element levels to calculate the relative macroscopic properties. The entire computational procedure has been applied to two well‐known PCN systems, namely Nylon 6/Cloisite 20A and Nylon 6/Cloisite 30B, as test materials, and their mechanical properties were predicted in excellent agreement with the available experimental data. Importantly, our methodology is a truly bottom‐up approach, and no “learning from experiment” was needed in any step of the entire procedure.  相似文献   

15.
We have used the ring-polymer molecular dynamics method to calculate approximate Kubo-transformed velocity autocorrelation functions and self-diffusion coefficients for low-pressure liquid para-hydrogen at temperatures of 25 and 14 K. The resulting diffusion coefficients are shown to be consistent with experimental shear viscosities and the established finite-size relation D(L) approximately = D(infinity)-2.837k(B)T6pietaL, where k(B) is the Boltzmann constant, T the absolute temperature, eta the shear viscosity, and L the length of the (cubic) simulation cell. The diffusion coefficients D(L) obtained in simulations with finite system sizes are therefore too small. However, the extrapolation to infinite system size corrects this deficiency and leads to excellent agreement with experimental results. This both demonstrates the influence of system-size effects on quantum mechanical diffusion coefficients and provides further evidence that ring-polymer molecular dynamics is an accurate as well as practical way of including quantum effects in condensed phase molecular dynamics.  相似文献   

16.
The first stretching overtone region of short-lived, formerly inaccessible BiH3 near 3405 cm(-1) has been measured by Fourier-transform infrared spectroscopy with a resolution of 0.0066 cm(-1). Only the 2nu1(A1)/nu1+nu3(E) band system has been observed. Rotational analysis, with transitions reaching J'max=14, has revealed almost perfect local-mode behavior for the upper states denoted as (200A1/E) in the local-mode notation. Ratios of vibration-rotation interaction parameters q(eff)/alpha(eff)(BB) and r(eff)/alpha(eff)(BC), and the appropriate rotational constant differences, are in good agreement with theoretical local-mode limit values. A simple stretching vibrational model reproduces the observed vibrational term values well, and the potential parameters obtained are close to true values.  相似文献   

17.
The Smoluchowski equations, which describe coalescence growth, take into account combination reactions between a j-mer and a k-mer to form a (j+k)-mer, but not breakup of larger clusters to smaller ones. All combination reactions are assumed to be second order, with rate constants K(jk). The K(jk) are said to scale if K(lambda j,gamma k) = lambda(mu)gamma(nu)K(jk) for j < or = k. It can then be shown that, for large k, the number density or population of k-mers is given by Ak(a)e(-bk), where A is a normalization constant (a function of a, b, and time), a = -(mu+nu), and b(mu+nu-1) depends linearly on time. We prove this in a simple, transparent manner. We also discuss the origin of odd-even population oscillations for small k. A common scaling arises from the ballistic model, which assumes that the velocity of a k-mer is proportional to 1/square root of m(k) (Maxwell distribution), i.e., thermal equilibrium. This does not hold for the nascent distribution of clusters produced from monomers by reactive collisions. By direct calculation, invoking conservation of momentum in collisions, we show that, for this distribution, velocities are proportional to m(k)(-0.577). This leads to mu+nu = 0.090, intermediate between the ballistic (0.167) and diffusive (0.000) results. These results are discussed in light of the existence of systems in the experimental literature which apparently correspond to very negative values of mu+nu.  相似文献   

18.
The apparent critical point of the pure fluid and binary mixtures interacting with the Lennard-Jones potential has been calculated using Monte Carlo histogram reweighting techniques combined with either a fourth order cumulant calculation (Binder parameter) or a mixed-field study. By extrapolating these finite system size results through a finite size scaling analysis we estimate the infinite system size critical point. Excellent agreement is found between all methodologies as well as previous works, both for the pure fluid and the binary mixture studied. The combination of the proposed cumulant method with the use of finite size scaling is found to present advantages with respect to the mixed-field analysis since no matching to the Ising universal distribution is required while maintaining the same statistical efficiency. In addition, the accurate estimation of the finite critical point becomes straightforward while the scaling of density and composition is also possible and allows for the estimation of the line of critical points for a Lennard-Jones mixture.  相似文献   

19.
Prewetting transition is studied for the square-well fluid of attractive-well diameter lambda(ff)sigma(ff)=1.5 in the presence of a homogeneous surface modeled by the square-well potential of attractive well from 0.8sigma(ff) to 1.8sigma(ff). We investigate surface phase coexistence of thin-thick film transition using grand-canonical transition matrix Monte Carlo (GC-TMMC) and histogram reweighting techniques. Molecular dynamics (MD) and GC-TMMC are utilized to predict the properties of the fluid for various surface fluid affinities. Occurrences of prewetting transition with the variation of surface affinity are observed for a domain of reduced temperature from T(*)=0.62 to 0.75. We have used MD and GC-TMMC+finite size scaling (FSS) simulations to calculate the boundary tension as a function of temperature as well as surface affinity. Boundary tensions via MD and GC-TMMC+FSS methods are in good agreement. The boundary tension increases with the decrease of wall-fluid affinity. Prewetting critical properties are calculated using rectilinear diameter approach and scaling analysis. We found that critical temperature and density increase with the decrease of wall-fluid affinity.  相似文献   

20.
In the first paper of this series, we developed a new one-dimensional Monte Carlo approach for the study of flexible chains that are translocating through a small channel. We also presented a numerical scheme that can be used to obtain exact values for both the escape times and the escape probabilities given an initial pore-polymer configuration. We now present and discuss the fundamental scaling behaviors predicted by this Monte Carlo method. Our most important result is the fact that, in the presence of an external bias E, we observe a change in the scaling law for the translocation time tau as function of the polymer length N: In the general expression tau approximately N(beta)E, the exponent changes from beta=1 for moderately long chains to beta=1+nu or beta=2nu for very large values of N (for Rouse and Zimm dynamics, respectively). We also observe an increase in the effective diffusion coefficient due to the presence of entropic pulling on unbiased polymer chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号