首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
The photodissociation dynamics of Au-Xe leading to Xe(+) formation via the Ξ(1∕2)-X(2)Σ(+) (v('), 0) band system (41?500-41?800 cm(-1)) have been investigated by velocity map imaging. Five product channels have been indentified, which can be assigned to photoinduced charge transfer followed by photodissociation in either the neutral or the [Au-Xe](+) species. For the neutral species, charge transfer occurs via a superexcited Rydberg state prior to dissociative ionization, while single-photon excitation of the gold atom in Au(+)-Xe accesses an (Au(+))?-Xe excited state that couples to a dissociative continuum in Au-Xe(+). Mechanisms by which charge transfer occurs are proposed, and branching ratios for Xe(+) formation via the superexcited Rydberg state are reported. The bond dissociation energy for the first excited state of Au(+)-Xe is determined to be ~9720 ± 110 cm(-1).  相似文献   

2.
The salt [F5SN(H)Xe][AsF6] has been synthesized by the reaction of [F5SNH3][AsF6] with XeF2 in anhydrous HF (aHF) and BrF5 solvents and by solvolysis of [F3S triple bond NXeF][AsF6] in aHF. Both F5SN(H)Xe(+) and F5SNH3(+) have been characterized by (129)Xe, (19)F, and (1)H NMR spectroscopy in aHF (-20 degrees C) and BrF5 (supercooled to -70 degrees C). The yellow [F5SN(H)Xe][AsF6] salt was crystallized from aHF at -20 degrees C and characterized by Raman spectroscopy at -45 degrees C and by single-crystal X-ray diffraction at -173 degrees C. The Xe-N bond length (2.069(4) A) of the F5SN(H)Xe(+) cation is among the shortest Xe-N bonds presently known. The cation interacts with the AsF6(-) anion by means of a Xe---F-As bridge in which the Xe---F distance (2.634(3) A) is significantly less than the sum of the Xe and F van der Waals radii (3.63 A) and the AsF6(-) anion is significantly distorted from Oh symmetry. The (19)F and (129)Xe NMR spectra established that the [F5SN(H)Xe][AsF6] ion pair is dissociated in aHF and BrF5 solvents. The F5SN(H)Xe(+) cation decomposes by HF solvolysis to F5SNH3(+) and XeF2, followed by solvolysis of F5SNH3(+) to SF6 and NH4(+). A minor decomposition channel leads to small quantities of F5SNF2. The colorless salt, [F5SNH3][AsF6], was synthesized by the HF solvolysis of F3S triple bond NAsF5 and was crystallized from aHF at -35 degrees C. The salt was characterized by Raman spectroscopy at -160 degrees C, and its unit cell parameters were determined by low-temperature X-ray diffraction. Electronic structure calculations using MP2 and DFT methods were used to calculate the gas-phase geometries, charges, bond orders, and valencies as well as the vibrational frequencies of F 5SNH3(+) and F5SN(H)Xe(+) and to aid in the assignment of their experimental vibrational frequencies. In addition to F5TeN(H)Xe(+), the F5SN(H)Xe(+) cation provides the only other example of xenon bonded to an sp (3)-hybridized nitrogen center that has been synthesized and structurally characterized. These cations represent the strongest Xe-N bonds that are presently known.  相似文献   

3.
XeAuF     
XeAuF has been detected and characterized using microwave rotational spectroscopy. It was prepared by laser ablation of Au in the presence of Xe and SF(6), and stabilized in a supersonic jet of Ar. The spectrum was measured with a cavity pulsed jet Fourier transform microwave spectrometer, in the frequency range 6-26 GHz. Rotational constants, centrifugal distortion constants, and (131)Xe and (197)Au nuclear quadrupole coupling constants have been evaluated. The molecule is linear, with a short XeAu bond (2.54 A), and is rigid. The (131)Xe nuclear quadrupole coupling constant (NQCC) is large (-135 MHz). The (197)Au NQCC differs radically from that of uncomplexed AuF. The results are supported by those of ab initio calculations which have given an XeAu dissociation energy approximately 100 kJ mol(-1), plus Mulliken and natural bond orbital populations, MOLDEN plots of valence orbitals, and an energy density distribution. All evidence is consistent with XeAu covalent bonding in XeAuF.  相似文献   

4.
Reactions of the late third-row transition metal cation Au(+) with H(2), D(2), and HD are examined using guided ion beam tandem mass spectrometry. A flow tube ion source produces Au(+) in its (1)S (5d(10)) electronic ground state level. Corresponding state-specific reaction cross sections for forming AuH(+) and AuD(+) as a function of kinetic energy are obtained and analyzed to give a 0 K bond dissociation energy of D(0)(Au(+)-H) = 2.13 ± 0.11 eV. Quantum chemical calculations at the B3LYP∕HW+∕6-311+G(3p) and B3LYP∕Def2TZVPP levels performed here show good agreement with the experimental bond energy. Theory also provides the electronic structures of these species and the reactive potential energy surfaces. We also compare this third-row transition metal system with previous results for analogous reactions of the first-row and second-row congeners, Cu(+) and Ag(+). We find that Au(+) has a stronger M(+)-H bond, which can be explained by the lanthanide contraction and relativistic effects that alter the relative size of the valence s and d orbitals. Results from reactions with HD provide insight into the reaction mechanism and indicate that ground state Au(+) reacts largely via a direct mechanism, in concordance with the behavior of the lighter group 11 metal ions, but includes more statistical behavior than these metals as well.  相似文献   

5.
The collision-induced dissociation of VO(+) by Xe has been studied by the use of classical dynamics procedures on London-Eyring-Polanyi-Sato potential-energy surfaces in the collision energy range of 5.0-30 eV. The dissociation threshold behavior and the dependence of reaction cross sections on the collision energy closely follow the observed data with the threshold energy of 6.00 eV. The principal reaction pathway is VO(+) + Xe --> V(+)+ O + Xe and the minor pathway is VO(+) + Xe--> VXe(+) + O. At higher collision energies (E > 8.0 eV), the former reaction preferentially occurs near the O-V(+)...Xe collinear and perpendicular alignments, but the latter only occurs near the perpendicular alignment. At lower energies close to the threshold, the reactions are found to occur near the collinear configuration. No reaction occurs in the collinear alignment V(+)-O...Xe. The high and low energy-transfer efficiencies of the collinear alignments O-V(+)...Xe and V(+)-O...Xe are attributed to the effects of mass distribution. The activation of the VO(+) bond toward the dissociation threshold occurs through a translation-to-vibration energy transfer in a strong collision on a time scale of about 50 fs.  相似文献   

6.
Evidence is presented that there is a clear covalent component in the bonding of Au+ to Kr and Au+ to Xe, with some evidence that there may be such bonding between Au+ and Ar; for Au+ and Ne, there is no such evidence, and the bonding seems to be entirely physical. A model potential analysis shows that when all attractive inductive and dispersive terms out to R-8 are properly included in the Au+-Ne case, with an Ae(-bR) Born-Mayer repulsive term, essentially all the bonding in Au+-Ne can be rationalized by physical attraction alone. This is consistent with a natural bond order (NBO) analysis of the Au+-Ne ab initio wavefunctions, which shows the charge on Au+ to be very close to 1.0. In contrast, similar model potential and NBO analyses show quite clearly that physical interactions alone cannot account for the large bond energy values for the Au+-Kr and Au+-Xe complexes and are consistent with covalent contributions to the Au+-Kr and Au+-Xe interactions. Au+-Ar is seen to lie on the borderline between these two limits. In performing the model potential analyses, high-level ab initio calculations are employed [CCSD(T) energies, extrapolated to the complete basis set limit], to obtain reliable values of Re, De and omegae as input. A comparison of the gold-Xe bond distances in several solid-state Au(I, II and III) oxidation-state complex ions, containing "ligand" Xe atoms, prepared by Seppelt and co-workers, with that of the "free" Au+-Xe gas-phase ion is made, and a discussion of the trends is presented.  相似文献   

7.
The heat of adsorption of Xe and the change in work function by Xe adsorption have been investigated on Cu, Au, Ni, Pt and Rh films using the photoelectron emission technique. The surface potential of Xe appears to be directly related to the heat of adsorption: a large heat of adsorption is accompanied by a large surface potential. These results are discussed on the basis of various models for physical adsorption of inert gases on metals. The heats of adsorption found experimentally can satisfactorily be correlated with the measured surface potentials upon considering the interaction between Xe and the transition metal as charge transfer-no bond interaction. An alternative explanation for the large decrease in work function by Xe adsorption, the classical polarization model, can be rejected since it is unable to explain the high heats of adsorption on group VIII metals and if fails to describe the observed interdependence of the heat of adsorption and the surface potential. These conclusions are in agreement with earlier results obtained by studying the adsorption of Xe on several well defined cyrstal faces of Pt and Ir by field emission microscopy.  相似文献   

8.
The rare gas-noble metal systems XeMX (M = Au, Ag, Cu; X = F, Cl, Br) were investigated at the CCSD(T) and DFT levels. Geometric structures, natural bond orbital population, HOMO-LUMO gap, the rare gas-noble metal interaction and the chemical deformation density were analyzed. Experimental structure parameters of the XeAuF and XeMX (M = Ag, Cu; X = F, Cl) were reproduced at Xα level. At the same time, the XeAuCl and XeMBr (M = Au, Ag, Cu) compounds were predicted. The electronegativity of halogen atom X correlates with the M–X bond length, HOMO-LUMO gap, electronic structures and Xe–M bond energy.  相似文献   

9.
A guided-ion beam tandem mass spectrometer is used to study the reactions of Pt(+) with methane, PtCH(2)(+) with H(2) and D(2), and collision-induced dissociation of PtCH(4)(+) and PtCH(2)(+) with Xe. These studies experimentally probe the potential energy surface for the activation of methane by Pt(+). For the reaction of Pt(+) with methane, dehydrogenation to form PtCH(2)(+) + H(2) is exothermic, efficient, and the only process observed at low energies. PtH(+), formed in a simple C-H bond cleavage, dominates the product spectrum at high energies. The observation of a PtH(2)(+) product provides evidence that methane activation proceeds via a (H)(2)PtCH(2)(+) intermediate. Modeling of the endothermic reaction cross sections yields the 0 K bond dissociation energies in eV (kJ/mol) of D(0)(Pt(+)-H) = 2.81 +/- 0.05 (271 +/- 5), D(0)(Pt(+)-2H) = 6.00 +/- 0.12 (579 +/- 12), D(0)(Pt(+)-C) = 5.43 +/- 0.05 (524 +/- 5), D(0)(Pt(+)-CH) = 5.56 +/- 0.10 (536 +/- 10), and D(0)(Pt(+)-CH(3)) = 2.67 +/- 0.08 (258 +/- 8). D(0)(Pt(+)-CH(2)) = 4.80 +/- 0.03 eV (463 +/- 3 kJ/mol) is determined by measuring the forward and reverse reaction rates for Pt(+) + CH(4) right harpoon over left harpoon PtCH(2)(+) + H(2) at thermal energy. We find extensive hydrogen scrambling in the reaction of PtCH(2)(+) with D(2). Collision-induced dissociation (CID) of PtCH(4)(+), identified as the H-Pt(+)-CH(3) intermediate, with Xe reveals a bond energy of 1.77 +/- 0.08 eV (171 +/- 8 kJ/mol) relative to Pt(+) + CH(4). The experimental thermochemistry is favorably compared with density functional theory calculations (B3LYP using several basis sets), which also establish the electronic structures of these species and provide insight into the reaction mechanism. Results for the reaction of Pt(+) with methane are compared with those for the analogous palladium system and the differences in reactivity and mechanism are discussed.  相似文献   

10.
The pulsed-field-ionization zero-kinetic-energy photoelectron spectrum of Xe(2) has been measured between 97 350 and 108 200 cm(-1), following resonant two-photon excitation via selected vibrational levels of the C 0(u) (+) Rydberg state of Xe(2). Transitions to three of the six low-lying electronic states of Xe(2) (+) could be observed. Whereas extensive vibrational progressions were observed for the transitions to the I(32g) and I(32u) states, only the lowest vibrational levels of the II(12u) state could be detected. Assignments of the vibrational quantum numbers were derived from the analysis of the isotopic shifts and from the modeling of the potential energy curves. Adiabatic ionization energies, dissociation energies, and vibrational constants are reported for the I(32g) and the I(32u) states. Multireference configurational interaction and complete active space self-consistent field calculations have been performed to investigate the dependence of the spin-orbit coupling constant on the internuclear distance. The energies of vibrational levels, measured presently and in a previous investigation (Rupper et al., J. Chem. Phys. 121, 8279 (2004)), were used to determine the potential energy functions of the six low-lying electronic states of Xe(2) (+) using a global model that includes the long-range interaction and treats, for the first time, the spin-orbit interaction as dependent on the internuclear separation.  相似文献   

11.
Rare gas containing cations with general formula [Rg, B, 2F](+) have been investigated theoretically by second-order Mo?ller-Plesset perturbation, coupled cluster, and complete active space self-consistent field levels of theory with correlation-consistent basis sets. Totally two types of minima, i.e., boron centered C(2) (v) symmetried RgBF(2) (+) (Rg = Ar, Kr, and Xe) which can be viewed as loss of F(-) from FRgBF(2) and linear FRgBF(+) (Rg = Kr and Xe) are obtained at the CCSD(T)∕aug-cc-pVTZ∕SDD and CASSCF(10,8)∕aug-cc-pVTZ∕SDD levels, respectively. It is shown that the RgBF(2) (+) are global minima followed by FRgBF(+) at 170.9 and 142.2 kcal∕mol on the singlet potential-energy surfaces of [Rg, B, 2F](+) (Rg = Kr and Xe) at the CASPT2(10,8) ∕aug-cc-pVTZ∕SDD∕∕CASSCF(10,8)∕aug-cc-pVTZ∕SDD, respectively. The interconversion barrier heights between RgBF(2) (+) and FRgBF(+) (Rg = Kr and Xe) are at least 39 kcal∕mol. In addition, no dissociation transition state associated with RgBF(2) (+) and FRgBF(+) can be found. This suggests that RgBF(2) (+) (Rg = Ar, Kr, and Xe) can exist as both thermodynamically and kinetically stable species, while linear FRgBF(+) (Rg = Kr and Xe) can exist as metastable species compared with the lowest dissociation limit energies just like isoelectronic linear FRgBO and FRgBN(-). From natural bond orbital and atoms-in-molecules calculations, it is found that the positive charge is mainly located on Rg and boron atoms for both types of minima, the Rg-B bonds of ArBF(2) (+), KrBF(2) (+), and XeBF(2) (+) are mostly electrostatic, thus can be viewed as ion-induced dipole interaction; while that of linear FKrBF(+) and FXeBF(+) are covalent in nature. The previous experimental observation of ArBF(2) (+) by Pepi et al. [J. Phys. Chem. B. 110, 4492 (2006)] should correspond to C(2) (v) minimum. The presently predicted spectroscopies of KrBF(2) (+), XeBF(2) (+), FKrBF(+), and FXeBF(+) should be helpful for their experimental identification in the future.  相似文献   

12.
We have measured the absolute cross sections for reactions of Xe(+) and Xe(2+) with NH(3) at collision energies in the range from near-thermal to ~34 and ~69?eV, respectively. For Xe(+), the cross section for charge transfer, the only exothermic channel, decreases from ~200A?(2) below 0.1 eV to ~12A?(2) at the highest energies studied. The production of NH(3) (+) is the only channel observed below 5 eV, above which a small amount of NH(2) (+) is also formed. In Xe(2+) reactions, the main products observed are NH(3) (+) and NH(2) (+). The charge transfer cross section decreases monotonically from ~80 to ~6A?(2) over the studied energy range. The NH(2) (+) cross section is similar to the charge transfer cross section at the lowest energies, and exhibits a second component above 0.4 eV, with a maximum of 65A?(2) at 0.7 eV, above which the cross section decreases to ~30A?(2) at the highest energies studied. At energies above 10 eV, a small amount of NH(+) is also observed in Xe(2+) collisions. Product recoil velocity distributions were determined at selected collision energies, using guided-ion beam time-of-flight methods.  相似文献   

13.
Organic carbocyanine dye coatings have been analyzed by time-of-flight static secondary ion mass spectrometry (TOF-S-SIMS) using three types of primary ions: Ga(+) operating at 25 keV, and Xe(+) and SF(5) (+) both operating at 9 keV. Secondary ion yields obtained with these three primary ions have been compared for coatings with different layer thickness, varying from (sub)-monolayer to multilayers, on different substrates (Si, Ag and AgBr cubic microcrystals). For (sub)-monolayers deposited on Ag, Xe(+) and SF(5) (+) primary ions generate similar precursor ion intensities, but with Ga(+) slightly lower precursor ion intensities were obtained. Thick coatings on Ag as well as mono- and multilayers on Si produce the highest precursor and fragment ion intensities with the polyatomic primary ion. The yield difference between SF(5) (+) and Xe(+) can reach a factor of 6. In comparison with Ga(+), yield enhancements by up to a factor of 180 are observed with SF(5) (+). For the mass spectrometric analysis of dye layers on AgBr microcrystals, SF(5) (+) again proves to be the primary ion of choice.  相似文献   

14.
在许多金矿床中 ,微金与粘土矿物密切共生与伴生。研究金在粘土矿物中的赋存形式 ,对于研究金矿床的成因及选冶工艺都具有十分重要的意义 ,也是国内外研究的重要前沿课题 [1,2 ]。不同成因类型的粘土矿物具有不同的晶体化学特征 [3] ,深入研究粘土矿物与微金矿物的晶体化学性质和表面物理化学性质 ,对于粘土矿物与微金矿物之间关系的研究 ,了解金矿床在自然界的演化过程及成因机理 ,为优化选冶工艺提供可靠的理论依据也都具有十分重要的意义。化学键对于粘土矿物与微金矿物之间关系的研究也具有重要的意义。由于高岭石结构的相对复杂性等原…  相似文献   

15.
Rotational transitions for the Xe-N2 complex were measured in the frequency region from 4 to 18 GHz using a pulsed-nozzle Fourier-transform microwave spectrometer. Twelve (four) a-type transitions were recorded for the 132Xe-14N2 and 129Xe-14N2 (131Xe-15N)) isotopomers. In addition, the nuclear quadrupole hyperfine structures due to the presence of the 14N (nuclear-spin quantum number I=1) and 131Xe (I=32) nuclei were detected and analyzed. Two ab initio potential-energy surfaces were calculated at the coupled-cluster level of theory with single, double, and pertubatively included triple excitations. Dunning's augmented correlation-consistent polarized valence triple-zeta basis set was used for the nitrogen atoms. For the first surface, a well-tempered basis set with additional polarization functions was used for the Xe atom; for the second surface, a newly developed augmented correlation-consistent polarized valence quintuple-zeta basis set employing small-core relativistic pseudopotentials was used for the Xe atom. The basis sets were supplemented with bond functions for the van der Waals bond. The counterpoise correction was applied to reduce the basis-set superposition error. The resulting two surfaces both have a single minimum at a T-shaped geometry, with well depths of 122.4 and 119.3 cm(-1), respectively. Bound-state energies supported by the potential-energy surface were determined. The quality of the ab initio potential-energy surfaces was evaluated by comparison of the experimental transition frequencies and rotational and centrifugal distortion constants with those derived from the bound-state energies. A scaled potential-energy surface was obtained which has excellent agreement with the experimental data.  相似文献   

16.
Threshold collision-induced dissociation of M(+)(AAA) with Xe is studied using guided ion beam tandem mass spectrometry. M(+) include the alkali metal ions Na(+) and K(+). The three aromatic amino acids are examined, AAA = phenylalanine, tyrosine, or tryptophan. In all cases, endothermic loss of the intact aromatic amino acid is the dominant reaction pathway. The threshold regions of the cross sections are interpreted to extract 0 and 298 K bond dissociation energies for the M(+)-AAA complexes after accounting for the effects of multiple ion-neutral collisions, internal energy of the reactant ions, and dissociation lifetimes. Density functional theory calculations at the B3LYP/6-31G level of theory are used to determine the structures of the neutral aromatic amino acids and their complexes to Na(+) and K(+) and to provide molecular constants required for the thermochemical analysis of the experimental data. Theoretical bond dissociation energies are determined from single-point energy calculations at the B3LYP/6-311++G(3df,3pd) level using the B3LYP/6-31G geometries. Good agreement between theory and experiment is found for all systems. The present results are compared to earlier studies of these systems performed via kinetic and equilibrium methods. The present results are also compared to the analogous Na(+) and K(+) complexes to glycine, benzene, phenol, and indole to elucidate the relative contributions that each of the functional components of these aromatic amino acids make to the overall binding in these complexes.  相似文献   

17.
Ultrasensitive visual detection of hydrazine hydrate using a Au nanoparticles-based colorimetric sensing system (ANCSS) is reported for the first time, which is based on the hydrogen bonding recognition and the modality change of hydrogen bonding from "linear" (simple hydrogen bond interactions) to "nonlinear" (a complicated hydrogen bond network) between as-modified Au nanoparticles (Au NPs).  相似文献   

18.
UV-visible and resonance Raman spectra of Ti(2) isolated in Ar, Kr, and Xe matrices at temperatures of 10 K were measured by using the 514 nm line of an Ar ion laser. The data show that the Ti(2) molecule interacts strongly with Xe, leading to a significant weakening of the Ti[bond]Ti bond strength. The f(Ti[bond]Ti) force constant decreases in the series Ar>Kr>Xe, from 232.8 Nm(-1) in Ar and 225.5 Nm(-1) in Kr to 199.7 Nm(-1) in Xe. Additional experiments in an Ar matrix containing 2 % of Xe indicate the formation of a molecule of the formula Ti(2)Xe. Our spectra for Ti(2) in an Ar matrix give evidence for several previously not observed members of the Stokes progression. The sum of experimental data allows for an improved estimation of the dissociation energy on the basis of a LeRoy-Bernstein-Lam analysis. A dissociation energy of 1.18 eV was derived from this analysis. The UV-visible data give evidence of the vibrational levels of an excited state of Ti(2).  相似文献   

19.
The Xe nuclear magnetic resonance chemical shift differences that afford the discrimination between various biological environments are of current interest for biosensor applications and medical diagnostic purposes. In many such environments the Xe signal appears close to that in water. We calculate average Xe chemical shifts (relative to the free Xe atom) in solution in eleven liquids: water, isobutane, perfluoro-isobutane, n-butane, n-pentane, neopentane, perfluoroneopentane, n-hexane, n-octane, n-perfluorooctane, and perfluorooctyl bromide. The latter is a liquid used for intravenous Xe delivery. We calculate quantum mechanically the Xe shielding response in Xe-molecule van der Waals complexes, from which calculations we develop Xe (atomic site) interpolating functions that reproduce the ab initio Xe shielding response in the complex. By assuming additivity, these Xe-site shielding functions can be used to calculate the shielding for any configuration of such molecules around Xe. The averaging over configurations is done via molecular dynamics (MD). The simulations were carried out using a MD technique that one of us had developed previously for the simulation of Henry's constants of gases dissolved in liquids. It is based on separating a gaseous compartment in the MD system from the solvent using a semipermeable membrane that is permeable only to the gas molecules. We reproduce the experimental trends in the Xe chemical shifts in n-alkanes with increasing number of carbons and the large chemical shift difference between Xe in water and in perfluorooctyl bromide. We also reproduce the trend for a given solvent of decreasing Xe chemical shift with increasing temperature. We predict chemical shift differences between Xe in alkanes vs their perfluoro counterparts.  相似文献   

20.
《中国化学快报》2023,34(11):108370
Selective oxidation of biomass-derived monosaccharide into high value-added chemicals is highly desirable from sustainability perspectives. Herein, we demonstrate a surface-functionalized carbon nanotube-supported gold (Au/CNT-O and Au/CNT-N) catalyst for base-free oxidation of monosaccharide into sugar acid. Au/CNT-O and Au/CNT-N surfaces successfully introduced oxygen- and nitrogen-containing functional groups, respectively. The highest yields of gluconic acid and xylonic acid were 93.3% and 94.3%, respectively, using Au/CNT-N at 90 °C for 240 min, which is higher than that of using Au/CNT-O. The rate constants for monosaccharide decomposition and sugar acid formation in Au/CNT-N system were higher, while the corresponding activation energy was lower than in Au/CNT-O system. DFT calculation revealed that the mechanism of glucose oxidation to gluconic acid involves the adsorption and activation of O2, adsorption of glucose, dissociation of the formyl C-H bond and formation of O-H bond, and formation and desorption of gluconic acid. The activation energy barrier for the glucose oxidation over Au/CNT-N is lower than that of Au/CNT-O. The nitrogen-containing functional groups are more beneficial for accelerating monosaccharide oxidation and enhancing sugar acid selectivity than oxygen-containing functional groups. This work presents a useful guidance for designing and developing highly active catalysts for producing high-value-added chemicals from biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号