首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The contributions of the volume of sample injected, the mobile phase flow rate, the inner diameter of the needle seat capillary and that of the connector capillary, the heat exchanger, and the detector cell volume to the widths of bands eluted from the 1290 Infinity HPLC instrument were investigated in depth. Four sample volumes (0.16, 0.80, 4.0, and 20 μL), three flow rates (0.04, 0.4, and 4.0 mL/min), two needle seat capillary I.D. (100 mm × 115 and 140 μm), three sets of connector capillary I.D. (350 mm × 80, 115, and 140 μm placed upstream the column, and 220 mm × 80, 115, and 140 μm downstream the column), two UV detector cell volumes (0.8 and 2.4 μL), and the presence/absence of the heat exchanger (1.6 μL) between the inlet connector capillary tube and the column were combined to generate up to 4 × 3 × 2 × 3 × 2 × 2=288 system configurations for this instrument. For each configuration, 5 consecutive injections were performed in order to assess the injection-to-injection repeatability, providing 1440 elution band profiles which are analyzed. The results demonstrate that the band broadening contribution of the instrument depends mostly on the detector cell volume and on the inner diameter of the needle seat capillary tube. The impact of these two contributions is particularly important at high flow rates (4 mL/min). Best efficiencies are obtained with a small sample volume, below 1 μL, which avoids volume overload of the instrument, or with large sample volumes, which maximize the radial concentration gradients of the sample across the instrument channels, in the vicinity of the anfractuosities of the channel walls. The injection of large sample volumes reveals the imperfection of current injection systems, the performance of which is remote from the one expected to provide an ideal rectangular injection (~+4 μL(2)). Although the present behavior of the instrument is satisfactory, serious improvements would become necessary to operate the next generation of more efficient columns that might be commercialized soon.  相似文献   

2.
Analysis of geometry effects on band spreading of microchip electrophoresis   总被引:2,自引:0,他引:2  
Fu LM  Yang RJ  Lee GB 《Electrophoresis》2002,23(4):602-612
The geometry and the flow field conditions in the separation microchannel of an electrophoresis chip system may have important impact on the system's separation efficiency. Understanding the geometry effect on the flow field physics in the separation microchannel is beneficial to the design or operation of an electrophoresis system. The turns in a microfabricated separation microchannel generally results in degraded separation quality. To avoid this limitation, channels are constructed with different types of turns to determine the optimum design that minimizes turn-induced band broadening. We have designed and tested various geometric bend ratios to greatly reduce this so-called "racetrack" effect. The effects of the separation channel geometry, fluid velocity profile and bend ratio on the band distribution in the detection area are discussed. Results show that the folded square U-shaped channel is better for miniaturization and simplification. The band tilting was corrected and the racetrack effect reduced in the detection area when the bend ratio is 4:1. The detection time obtained from the present numerical solution matches very well with the experimental data.  相似文献   

3.
A microfluidic traveling-wave electrophoresis (TWE) system is reported that uses a locally defined traveling electric field wave within a microfluidic channel to achieve band transport and separation. Low voltages, over a range of -0.5 to +0.5 V, are used to avoid electrolysis and other detrimental redox reactions while the short distance between electrodes, ~25 μm, provides high electric fields of ~200 V cm(-1). It is expected that the low voltage requirements will simplify the future development of smaller portable devices. The TWE device uses four interdigitated electrode arrays: one interdigitated electrode array pair is on the top of the microchannel and the other interdigitated electrode array pair is on the microchannel bottom. The top and bottom substrates are joined by a PDMS spacer that has a nominal height of 15 μm. A pinched injection scheme is used to define a narrow sample band within an injection cross either electrokinetically or hydrodynamically. Separation of two dyes, fluorescein and FLCA, with baseline resolution is achieved in less than 3 min and separation of two proteins, insulin and casein is demonstrated. Investigation of band broadening with fluorescein reveals that sample band widths equivalent to the diffusion limit can be achieved within the microfluidic channel, yielding highly efficient separations. This low level of band broadening can be achieved with capillary electrophoresis, but is not routinely observed in microchannel electrophoresis. Sample enrichment can be achieved very easily with TWE using a device with converging electric field waves controlled by two sets of independently controlled interdigitated electrodes arrays positioned serially along the microchannel. Sample enrichment of 40-fold is achieved without heterogeneous buffer/solvent systems, sorptive, or permselective materials. While there is much room for improvement in device fabrication, and many capabilities are yet to be demonstrated, it is anticipated that the capabilities and performance demonstrated herein will enable new lab-on-a-chip processes and systems.  相似文献   

4.
In micro total analysis systems, liquid chromatography (LC) works under pressure-driven flow is the essential analysis component. There were not, however, much works on microchip LC. Here we developed a microchip for reversed-phase LC using porous monolithic silica. The chip consisted of a double T-shaped injector and a approximately 40-cm serpentine separation channel. The octadecyl-modified monolithic silica was prepared in the specified part of the channel on the microchip using sol-gel process. Furthermore, the effect of geometry of turn sections on band dispersion at turns was examined under pressure-driven flow. High separation efficiencies of 15,000-18,000 plates/m for catechins were obtained using the LC chip.  相似文献   

5.
High‐throughput particle counting by a differential resistive pulse sensing method in a microfluidic chip is presented in this paper. A sensitive differential microfluidic sensor with multiple detecting channels and one common reference channel was devised. To test the particle counting performance of this chip, an experimental system which consists of the microfluidic chip, electric resistors, an amplification circuit, a LabView based data acquisition device was developed. The influence of the common reference channel on the S/N of particle detection was investigated. The relationship between the hydraulic pressure drop applied across the detecting channel and the counting throughput was experimentally obtained. The experimental results show that the reference channel designed in this work can improve the S/N by ten times, thus enabling sensitive high‐throughput particle counting. Because of the greatly improved S/N, the sensing gate with a size of 25 × 50 × 10 μm (W × L × H) in our chips can detect and count particles larger than 1.5 μm in diameter. The counting throughput increases with the increase in the flowing velocity of the sample solution. An average throughput of 7140/min under a flow rate of 10 μL/min was achieved. Comparing with other methods, the structure of the chip and particle detecting mechanism reported in this paper is simple and sensitive, and does not have the crosstalking problem. Counting throughput can be adjusted simply by changing the number of the detecting channels.  相似文献   

6.
The separation efficiencies of three different asymmetrical flow field-flow fractionation (AF4) channel designs were evaluated using polystyrene latex standards. Channel breadth was held constant for one channel (rectangular profile), and was reduced either linearly (trapezoidal profile) or exponentially (exponential profile) along the length for the other two. The effective void volumes of the three channel types were designed to be equivalent. Theoretically, under certain flow conditions, the mean channel flow velocity of the exponential channel could be arranged to remain constant along the channel length, thereby improving separation in AF4. Particle separation obtained with the exponential channel was compared with particle separation obtained with the trapezoidal and rectangular channels. We demonstrated that at a certain flow rate condition (outflow/inflow rate = 0.2), the exponential channel design indeed provided better performance with respect to the separation of polystyrene nanoparticles in terms of reducing band broadening. While the trapezoidal channel exhibited a little poorer performance than the exponential, the strongly decreasing mean flow velocity in the rectangular channel resulted in serious band broadening, a delay in retention time, and even failure of larger particles to elute.  相似文献   

7.
We designed and fabricated microfluidic devices with serpentine separation channels and asymmetrically tapered turns, thus allowing high efficiency separations and minimizing band broadening associated with the “racetrack” effect. We evaluated the performance of these devices by measuring the variation in separation efficiency with separation length, electric field strength, taper ratio of the turns, and number of turns. N‐Glycans derived from ribonuclease B and labeled with 8‐aminopyrene‐1,3,6‐trisulfonic acid were electrophoretically separated on serpentine channels with separation lengths of 11, 18, 22, and 36 cm at electric field strengths from 750 to 1750 V/cm. Separations on the 36‐cm channel produced plate numbers up to 940 000 with an analysis time under 3.1 min, whereas separations on the 22‐cm channel had a shorter analysis time (less than 1.25 min), still with respectable efficiencies (up to 600 000 plates). Turn‐induced dispersion was minimized with taper ratios 2 and 3, whereas having two or four 180° turns along with the separation length did not impact the overall efficiency. The developed device was used to analyze native and desialylated N‐glycans derived from the blood serum of an ovarian cancer patient and a disease‐free individual. Separation efficiencies similar to that achieved with the model glycans from ribonuclease B were attained for these biological samples.  相似文献   

8.
In this work, a simple and novel sheath‐flow sample injection method (SFSIM) is introduced to reduce the band broadening of free‐flow zone electrophoresis separation in newly developed self‐balance free‐flow electrophoresis instrument. A needle injector was placed in the center of the separation inlet, into which the BGE and sample solution were pumped simultaneously. BGE formed sheath flow outside the sample stream, resulting in less band broadening related to hydrodynamics and electrodynamics. Hemoglobin and C‐phycocyanin were successfully separated by the proposed method in contrast to the poor separation of free‐flow electrophoresis with the traditional injection method without sheath flow. About 3.75 times resolution enhancement could be achieved by sheath‐flow sample injection method.  相似文献   

9.
The influences of the errors made in the measurement of the extra-column volume of an instrument on the accuracies of the estimates made of the column efficiency and of the parameters of the mass transfer kinetics were investigated from an experimental point of view. A standard HP1090 apparatus (extra-column volume, approximately 50 micro L) was used to measure the efficiency of a Sunfire-C(18) RPLC column (column hold-up volume, approximately 1.50 mL). The first and second moments of the peaks of phenol (a retained compound) and of thiourea (a practically non-retained compound) were measured at six different temperatures between 22 and 78 degrees C, for flow rates between 0.10 and 4.70 mL/min (i.e., for linear velocities between 0.025 and 1.179 cm/s). Each series of measurements was successively made with the instrument being fitted with and without the column. The experimental HETP data must be corrected for the solute dispersion in the connected tubes in order properly to assess the true column efficiency. Even with a modern, high performance instrument, the dispersion of a non-retained compound is essentially due to the band broadening phenomena that take place in the extra-column volumes, the sum of all these extra-column band broadening contributions accounting for more than 80% of the total band broadening measured. The contribution of the sampling device is particularly deleterious since, for a 2 mu L injection, the maximum solute concentration in the peak that enters into the column is nearly ten-fold lower than that of the sample. Nevertheless, the impact of the extra-column volumes on the estimates of the kinetic parameters (e.g., molecular diffusion coefficient D(m) and effective particle diffusivity D(e)) remains negligible. Obviously, the relative error made on the column efficiency of a retained compound depends much on its retention factor. It decreases from 8 to 1% when the retention factor increases from 5 to 17.  相似文献   

10.
A rapid and low-cost means of developing a working prototype for a positive-displacement driven open tubular liquid chromatography (OTLC) analyzer is demonstrated. A novel flow programming and injection strategy was developed and implemented using soft lithography, and evaluated in terms of chromatographic band broadening and efficiency. A separation of two food dyes served as the model sample system. Sample and mobile phase flowed continuously by positive displacement through the OTLC analyzer. Rectangular channels, of dimensions 10 μm deep by 100 μm wide, were micro-fabricated in poly-dimethylsiloxane (PDMS), with the separation portion 6.6 cm long. Using a novel flow programming method, in contrast to electroosmotic flow, sample injection volumes from 0.5 to 10 nl were made in real-time. Band broadening increased substantially for injection volumes over 1 nl. Although underivatized PDMS proved to be a sub-optimal stationary phase, plate heights, H, of 12 μm were experimentally achieved for an unretained analyte with the rectangular channel resulting in a reduced plate height, h, of 1.2. Chromatographic efficiency of the unretained analyte followed the model of an OTLC system limited by mass-transfer in the mobile phase. Flow rates from 6 nl min−1 up to 200 nl min−1 were tested, and van Deemter plots confirmed plate heights were optimum at 6 nl min−1 over the tested flow rate range. Thus, the best separation efficiency, N of 5500 for the 6.6 cm length separation channel, was achieved at the minimum flow rate through the column of 6 nl min−1, or 3 ml year−1. This analyzer is a low-cost sampling and chemical analysis tool that is intended to complement micro-fabricated electrophoretic and related separation devices.  相似文献   

11.
Ramadan Q  Gijs MA 《The Analyst》2011,136(6):1157-1166
Simultaneous washing and concentration of functionalized magnetic beads in a complex sample solution were demonstrated by applying a rotational magnetic actuation system to a microfluidic chip under continuous flow conditions. The rotation of periodically arranged small permanent magnets close to the fluidic channel carrying a magnetic bead suspension allows trapping and releasing of the beads along the fluidic channel in a periodical manner. Each trapping and releasing event resembles one washing cycle. A purification efficiency of magnetic beads out of a mixed magnetic and non-magnetic bead sample solution of 83±4% at a flow rate of 0.5 μL min(-1), and a magnetic bead recovery or concentration efficiency of 91±5% were achieved using a flow rate of 0.2 μL min(-1). The detection performance of the device was experimentally evaluated with two different bioassays, using either streptavidin-coated magnetic beads in combination with biotinylated fluorescent isothiocyanate (FITC), or a mouse antigen (Ag)-antibody (Ab) system.  相似文献   

12.
The corrected heights equivalent to a theoretical plate (HETP) of three 4.6mm I.D. monolithic Onyx-C(18) columns (Onyx, Phenomenex, Torrance, CA) of different lengths (2.5, 5, and 10 cm) are reported for retained (toluene, naphthalene) and non-retained (uracil, caffeine) small molecules. The moments of the peak profiles were measured according to the accurate numerical integration method. Correction for the extra-column contributions was systematically applied. The peak parking method was used in order to measure the bulk diffusion coefficients of the sample molecules, their longitudinal diffusion terms, and the eddy diffusion term of the three monolithic columns. The experimental results demonstrate that the maximum efficiency was 60,000 plates/m for retained compounds. The column length has a large impact on the plate height of non-retained species. These observations were unambiguously explained by a large trans-column eddy diffusion term in the van Deemter HETP equation. This large trans-rod eddy diffusion term is due to the combination of a large trans-rod velocity bias (?3%), a small radial dispersion coefficient in silica monolithic columns, and a poorly designed distribution and collection of the sample streamlets at the inlet and outlet of the monolithic rod. Improving the performance of large I.D. monolithic columns will require (1) a detailed knowledge of the actual flow distribution across and along these monolithic rod and (2) the design of appropriate inlet and outlet distributors designed to minimize the nefarious impact of the radial flow heterogeneity on band broadening.  相似文献   

13.
Lee C  Lee J  Kim HH  Teh SY  Lee A  Chung IY  Park JY  Shung KK 《Lab on a chip》2012,12(15):2736-2742
This paper presents experimental results demonstrating the feasibility of high frequency ultrasonic sensing and sorting for screening single oleic acid (lipid or oil) droplets under continuous flow in a microfluidic channel. In these experiments, hydrodynamically focused lipid droplets of two different diameters (50 μm and 100 μm) are centered along the middle of the channel, which is filled with deionized (DI) water. A 30 MHz lithium niobate (LiNbO(3)) transducer, placed outside the channel, first transmits short sensing pulses to non-invasively determine the acoustic scattering properties of the individual droplets passing through the beam's focus. Integrated backscatter (IB) coefficients, utilized as a sorting criterion, are measured by analyzing the received echo signals from each droplet. When the IB values corresponding to 100 μm droplets are obtained, a custom-built LabVIEW panel commands the transducer to emit sinusoidal burst signals to commence the sorting operation. The number of droplets tested for the sorting is 139 for 50 μm droplets and 95 for 100 μm droplets. The sensing efficiencies are estimated to be 98.6% and 99.0%, respectively. The sorting is carried out by applying acoustic radiation forces to 100 μm droplets to direct them towards the upper sheath flow, thus separating them from the centered droplet flow. The sorting efficiencies are 99.3% for 50 μm droplets and 85.3% for 100 μm droplets. The results suggest that this proposed technique has the potential to be further developed into a cost-effective and efficient cell/microparticle sorting instrument.  相似文献   

14.
T Nisisako  T Ando  T Hatsuzawa 《Lab on a chip》2012,12(18):3426-3435
This study describes a microfluidic platform with coaxial annular world-to-chip interfaces for high-throughput production of single and compound emulsion droplets, having controlled sizes and internal compositions. The production module consists of two distinct elements: a planar square chip on which many copies of a microfluidic droplet generator (MFDG) are arranged circularly, and a cubic supporting module with coaxial annular channels for supplying fluids evenly to the inlets of the mounted chip, assembled from blocks with cylinders and holes. Three-dimensional flow was simulated to evaluate the distribution of flow velocity in the coaxial multiple annular channels. By coupling a 1.5 cm × 1.5 cm microfluidic chip with parallelized 144 MFDGs and a supporting module with two annular channels, for example, we could produce simple oil-in-water (O/W) emulsion droplets having a mean diameter of 90.7 μm and a coefficient of variation (CV) of 2.2% at a throughput of 180.0 mL h(-1). Furthermore, we successfully demonstrated high-throughput production of Janus droplets, double emulsions and triple emulsions, by coupling 1.5 cm × 1.5 cm - 4.5 cm × 4.5 cm microfluidic chips with parallelized 32-128 MFDGs of various geometries and supporting modules with 3-4 annular channels.  相似文献   

15.
An experimental study of a micromachined non-porous pillar array column performance under non-retentive conditions is presented. The same pillar structure has been fabricated in cyclo-olefin polymer (COP) chips with three different depths via hot embossing and pressure-assisted thermal bonding. The influence of the depth on the band broadening along with the already known contribution arising from the top and bottom cover plates has been studied. The experimental results exhibit reduced plate heights as low as 0.2, which are in agreement with the previous experimental work. Moreover, the constant values of the reduced Van Deemter expression are also in accordance with the previous studies. A more exhaustive study of the C-term band broadening is also presented, showing that comparing the space between the pillars with different open tubular rectangular channels offers a good estimation of the C-term band broadening that is obtained experimentally. These experimental results, hence, confirm that micromachined pillar array columns fabricated in COP can achieve the same performance as the ones fabricated in silicon for the presently studied pillar channel design.  相似文献   

16.
Ueno K  Kitamura N 《The Analyst》2003,128(12):1401-1405
Polymer microchannel chips (depth 20 microm and width 100 microm) integrated with band electrodes were fabricated by photolithography and imprinting methods, and applied to a spectroelectrochemical study on the cation radical of perylene (Pe). A propylene carbonate solution of Pe was brought into the channel chip by pressure driven flow and Pe was oxidized at the working band electrode (WE) in the channel. Simultaneously, absorption measurements of the solution phase in the downstream side of the electrode (30 microm from WE) were conducted on the basis of space resolved spectroscopy. The decrease in the absorbance of Pe at 438 nm upon electrolysis accompanied an appearance of the absorption band around 538 nm, which was assigned to that of the Pe cation radical. When the perylene solution was introduced to the microchip at a slow flow velocity, the dimer cation radical of Pe was shown to be produced in the channel chip. The formation and disappearance processes of the monomer and dimer cation radicals of Pe in the channel were followed by flow velocity and position dependencies of the absorption spectra.  相似文献   

17.
Mai TD  Hauser PC 《Electrophoresis》2011,32(21):3000-3007
It is demonstrated that a hydrodynamic flow superimposed on the mobility of analyte anions can be used for the optimization of analysis time in capillary zone electrophoresis. It was also possible to use the approach for counter‐balancing the electroosmotic flow and this works as well as the use of surface modifiers. To avoid any band‐broadening due to the bulk flow narrow capillaries of 10 μm internal diameter were employed. This was enabled by the use of capacitively coupled contactless conductivity detection, which does not suffer from the downscaling, and detection down to between 1 and 20 μM for a range of inorganic and small organic anions was found feasible. Precisely controlled hydrodynamic flow was generated with a sequential injection manifold based on a syringe pump. Sample injection was carried out with a new design relying on a simple piece of capillary tubing to achieve the appropriate back‐pressure for the required split‐injection procedure.  相似文献   

18.
We report on a series of hydrodynamic chromatography separations conducted in micropillar array columns with an interpillar distance spacing of, respectively, 1.00, 0.70, and 0.47 μm. The columns have been produced using state-of-the-art deep-UV lithography and deep reactive ion etching techniques. Despite the fact that the efficiency was smaller than theoretically possible (due to fabrication limitations and significant injection and detection band broadening), it was nevertheless possible to separate mixtures of fluorescein isothiocyanate (used as the t(0) -marker) and 20- and 40-nm polystyrene beads. With the smallest interpillar distance, a resolution of R(s) = 0.5 between the 20- and 40-nm particles could be obtained in 90s over a column length of 4 cm. The selectivity obtained in the pillar array columns was found to be very similar to that observed in packed-bed columns. By detecting the fluorescent signals in a 90-μm-deep detection groove at the end of the column, the signal-to-noise ratio could be enhanced up to 150 times.  相似文献   

19.
A commercially available capillary LC instrument was modified to investigate and control the contribution of different instrument components on extracolumn band broadening. Quantitative estimations of dispersion induced by several equipmental parts were carried out. Injection parameters could be optimized to achieve the theoretical value of 12 for a profile factor describing a rectangular sample profile. Additionally, an additive injector flow channel dependent dispersion effect was found. A practical approach for minimizing instrumental effects in capillary LC is suggested. The results were compared with those obtained with an HPLC instrument designed for conventional size columns.  相似文献   

20.
We describe a microfluidic cytometer that performs simultaneous optical and electrical characterisation of particles. The microfluidic chip measures side scattered light, signal extinction and fluorescence using integrated optical fibres coupled to photomultiplier tubes. The channel is 80 μm high and 200 μm wide, and made from SU-8 patterned and sandwiched between glass substrates. Particles were focused into the analysis region using 1-D hydrodynamic focusing and typical particle velocities were 0.1 ms(-1). Excitation light is coupled into the detection channel with an optical fibre and focused into the channel using an integrated compound air lens. The electrical impedance of particles is measured at 1 MHz using micro-electrodes fabricated on the channel top and bottom. This data is used to accurately size the particles. The system is characterised using a range of different sized polystyrene beads (fluorescent and non-fluorescent). Single and mixed populations of beads were measured and the data compared with a conventional flow cytometer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号