首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
X-ray magnetic circular dichroism (XMCD) measurements on Yb14MnSb11 provide experimental evidence of a moment of 5 microB on Mn, with partial cancellation by an opposing moment on the Sb4 cage surrounding each Mn ion. The compound is isostructural to Ca14AlSb11, with Mn occupying the Al site in the AlSb4(9-) discrete tetrahedral, anionic unit. Bulk magnetization measurements indicate a saturation moment of 3.90 +/- 0.02 microB/formula unit consistent with four unpaired spins and implying a Mn3+, high-spin d4 state. XMCD measurements reveal that there is strong dichroism in the Mn L23 edge, the Sb M45 edge shows a weak dichroism indicating antialignment to the Mn, and the Yb N45 edge shows no dichroism. Comparisons of the Mn spectra with theoretical models for Mn2+ show excellent agreement. The bulk magnetization can be understood as Mn with a moment of 5 microB and a 2+ configuration, with cancellation of one spin by an antialigned moment from the Sb 5p band of the Sb4 cage surrounding the Mn.  相似文献   

2.
3.
4.
Nanostructured Bi(2-x)Cu(x)S(3) (x = 0, 0.002, 0.005, 0.007, 0.01, 0.03) thermoelectric polycrystals were fabricated by combining mechanical alloying (MA) and spark plasma sintering (SPS) methods. The effect of Cu content on the microstructure and thermoelectric property of Bi(2-x)Cu(x)S(3) bulk samples was investigated. It was found that the subtle tailoring of Cu content could reduce both the electrical resistivity and the thermal conductivity at the same time, and consequently enhancing the thermoelectric property. A low electrical resistivity of 1.34 × 10(-4)Ω m(-1) and a low thermal conductivity of 0.52 W m(-1) K(-1) were obtained for the Bi(1.995)Cu(0.005)S(3) sample at 573 K. The low thermal conductivity is supposed to be due to the nanoscopic Cu-rich regions embedded in the host matrix. A peak ZT value of 0.34 at 573 K was achieved for the Bi(1.995)Cu(0.005)S(3) composition, which is the highest value in the Bi(2)S(3) system reported so far.  相似文献   

5.
Perovskite-type CaMn(1-x)Nb(x)O(3+/-delta) (x = 0.02, 0.05, and 0.08) compounds were synthesized by applying both a "chimie douce" (SC) synthesis and a classical solid state reaction (SSR) method. The crystallographic parameters of the resulting phases were determined from X-ray, electron, and neutron diffraction data. The manganese oxidations states (Mn(4+)/Mn(3+)) were investigated by X-ray photoemission spectroscopy. The orthorhombic CaMn(1-x)Nb(x)O(3+/-delta) (x = 0.02, 0.05, and 0.08) phases were studied in terms of their high-temperature thermoelectric properties (Seebeck coefficient, electrical resistivity, and thermal conductivity). Differences in electrical transport and thermal properties can be correlated with different microstructures obtained by the two synthesis methods. In the high-temperature range, the electron-doped manganate phases exhibit large absolute Seebeck coefficient and low electrical resistivity values, resulting in a high power factor, PF (e.g., for x = 0.05, S(1000K) = -180 microV K(-1), rho(1000K) = 16.8 mohms cm, and PF > 1.90 x 10(-4) W m(-1) K(-2) for 450 K < T < 1070 K). Furthermore, lower thermal conductivity values are achieved for the SC-derived phases (kappa < 1 W m(-1) K(-1)) compared to the SSR compounds. High power factors combined with low thermal conductivity (leading to ZT values > 0.3) make these phases the best perovskitic candidates as n-type polycrystalline thermoelectric materials operating in air at high temperatures.  相似文献   

6.
Bie H  Mar A 《Inorganic chemistry》2008,47(15):6763-6770
The isostructural rare-earth titanium antimonides RE 2Ti 11 - x Sb 14 + x ( RE = Sm, Gd, Tb, Yb) have been synthesized by arc-melting reactions of the elements. Single-crystal X-ray diffraction revealed that they adopt a new structure type (Pearson symbol oP54, space group Pnma, Z = 2; a = 15.8865(6)-15.9529(9) A, b = 5.7164(2)-5.7135(3) A, c = 12.9244(5)-12.9442(7) A for RE = Sm-Yb). The structure consists of titanium-centered octahedra (CN6) and pentagonal bipyramids (CN7) connected to form a 3D framework whose cavities are filled with RE atoms. 1D linear skewers of titanium atoms, within face-sharing octahedral chains, and similar skewers of antimony atoms, associated with the titanium-centered pentagonal bipyramids, extend along the b direction. On proceeding from Sm 2Ti 11Sb 14 to Tb 2Ti 10.41(1)Sb 14.59(1) and Yb 2Ti 10.58(1)Sb 14.42(1), antimony atoms are disordered within some of the titanium sites. Resistivity measurements on the samarium and ytterbium members indicated metallic behavior.  相似文献   

7.
The thermoelectric performance of EuCd(2)Sb(2) and YbCd(2)Sb(2) was improved by mixed cation occupation. The composition, structure, and thermoelectric properties of Yb(x)Eu(1-x)Cd(2)Sb(2) (x=0, 0.5, 0.75, and 1) have been investigated. Polycrystalline samples are prepared by direct reaction of the elements. Thermoelectric properties were investigated after densification of the materials by spark plasma sintering. Yb(x)Eu(1-x)Cd(2)Sb(2) crystallizes in the P3m1 space group. The lattice parameters increase with the europium content. These materials show low electrical resistivity, high Seebeck coefficient, and low thermal conductivity together with high carrier concentration and high carrier mobility. ZT values of 0.88 and 0.97 are obtained for Yb(0.5)Eu(0.5)Cd(2)Sb(2) and Yb(0.75)Eu(0.25)Cd(2)Sb(2) at 650 K, respectively.  相似文献   

8.
The compounds Pb(2)La(x)Bi(8-x)S(14) (I), Sr(2)La(x)Bi(8-x)S(14) (II), and Cs(2)La(x)Bi(10-x)S(16) (III) were synthesized from the corresponding elements or binary sulfides at temperatures above 850 degrees C. Compounds I and II are isostructural, forming a new structure type, while the structure of III is related to the structure of the mineral kobellite. All compounds crystallize in the orthorhombic space group Pnma (No. 62) with a = 21.2592(4) A, b = 4.0418(1) A, c = 28.1718(3) A, Z = 4 for I, a = 21.190(1) A, b = 4.0417(2) A, c = 28.285(2) A, Z = 4 for II and a = 34.893(4) A, b = 4.0697(4) A, c = 21.508(2) A, Z = 4 for III. All compounds exhibit mixed site occupancy between Bi and La. Furthermore, I and II exhibit disorder between the divalent atom (Sr or Pb) and/or La and/or Bi. The structures of I and II consist of thin walls made of two metal-atom-thick NaCl-type blocks running in two opposite directions in the ac plane, forming rhombus-shaped tunnels. These tunnels are filled with Bi(2)Te(3)-type fragments. In the points where the walls intersect they form Gd(2)S(3)-type fragments. The structure of III consists of a complex three-dimensional framework with Cs-filled tunnels. All compounds are semiconductors with band gaps around 1.0 eV, and they melt around 740-860 degrees C.  相似文献   

9.
Large samples (6-8 g) of Yb11Sb10 and Ca11Sb10 have been synthesized using a high-temperature (1275-1375 K) flux method. These compounds are isostructural to Ho11Ge10, crystallizing in the body-centered, tetragonal unit cell, space group I4/mmm, with Z=4. The structure consists of antimony dumbbells and squares, reminiscent of Zn4Sb3 and filled Skutterudite (e.g., LaFe4Sb12) structures. In addition, these structures can be considered Zintl compounds; valence precise semiconductors with ionic contributions to the bonding. Differential scanning calorimetry (DSC), thermogravimetry (TG), resistivity (ρ), Seebeck coefficient (α), thermal conductivity (κ), and thermoelectric figure of merit (zT) from room temperature to at minimum 975 K are presented for A11Sb10 (A=Yb, Ca). DSC/TG were measured to 1400 K and reveal the stability of these compounds to ∼1200 K. Both A11Sb10 (A=Yb, Ca) materials exhibit remarkably low lattice thermal conductivity (∼10 mW/cm K for both Yb11Sb10 and Ca11Sb10) that can be attributed to the complex crystal structure. Yb11Sb10 is a poor metal with relatively low resistivity (1.4 mΩ cm at 300 K), while Ca11Sb10 is a semiconductor suggesting that a gradual metal-insulator transition may be possible from a Ca11−xYbxSb10 solid solution. The low values and the temperature dependence of the Seebeck coefficients for both compounds suggest that bipolar conduction produces a compensated Seebeck coefficient and consequently a low zT.  相似文献   

10.
The phase relations, crystal structure and thermoelectric properties of the type-I solid solution Ba(8)Ni(x)Si(46-x) were investigated. Based on X-ray diffraction, differential thermal analysis and electron probe microanalysis data, a partial phase diagram was constructed for the Si-rich part of ternary system Ba-Ni-Si at 800 °C. The solubility range of Ni in the clathrate-I phase at 800 °C was determined (2.9 ≤x≤ 3.8) and thermoelectric properties, namely electrical resistivity, Seebeck-coefficient and thermal conductivity, were measured in the temperature range from 300 to 850 K. A shift of the thermoelectric properties from a predominantly metallic to a more semiconducting behavior was observed for an increasing Ni-content. Density functional calculations revealed a significant decrease of the gap width in the density of states induced by the incorporation of Ni. Electrical resistivity and Seebeck coefficients for Ba(8)Ni(x)Si(46-x) with 3.3 ≤x≤ 3.8 have been modeled within the rigid band approximation.  相似文献   

11.
Rare-earth ternary complexes Tb(1-x)Eu(x)(m-NBA)(3)Phen (X=1, 0.25, 0.5, 0.75, 1.0) were synthesized and characterized by IR, DTA-TG, UV, fluorescent spectra and elemental analysis. It was found that luminescence of Eu(3+) complex was enhanced by doped with Tb(3+). It is proved by TG curve that the complexes are stable, ranging from ambient temperature to 360 degrees C in air. The organic-inorganic combined structural device was fabricated, and the electroluminescence intensity of the combined structural device was improved compared with the device of the purely organic components.  相似文献   

12.
Two new vanadoselenites, [SeV(3)O(11)](3)(-) and [Se(2)V(2)O(10)](2)(-), were synthesized by reacting SeO(2) with VO(3)(-). Single-crystal X-ray structural analyses of [(n-C(4)H(9))(4)N](3)[SeV(3)O(11)].0.5H(2)O [orthorhombic, space group P2(1)2(1)2, a = 22.328(5) A, b = 44.099(9) A, c = 12.287(3) A, Z = 8] and [[(C(6)H(5))(3)P](2)N](2)[Se(2)V(2)O(10)] [monoclinic, space group P2(1)/n, a = 12.2931(3) A, b = 13.5101(3) A, c = 20.9793(5) A, beta = 106.307(1) degrees, Z = 2] revealed that both anions are composed of Se(x)()V(4)(-)(x)()O(4) rings. The (51)V, (77)Se, and (17)O NMR spectra established that both [SeV(3)O(11)](3)(-) and [Se(2)V(2)O(10)](2)(-) anions maintain this ring structure in solution.  相似文献   

13.
The structure, anisotropic magnetic, electrical and thermal transport properties for single crystals of Ca(3)Co(4-x)Cu(x)O(9) (x = 0, 0.2, 0.4, 0.6 and 0.8) have been investigated systematically. The Cu-doping with x = 0.2 at Co-site is sufficient to drive the low-temperature spin-glass state in the Ca(3)Co(4)O(9) system. The value of resistivity along ab-plane decreases monotonously with increasing x in the whole temperature range studied, and around room temperature, the in-plane resistivity of Ca(3)Co(3.2)Cu(0.8)O(9) is about 71% smaller than that of the undoped sample. The temperature region where the Fermi-liquid transport mechanism dominates becomes remarkably narrowed due to the Cu-doping while the electronic correlation in the system is enhanced. With further addition of Cu in the Ca(3)Co(4)O(9) system, the in-plane thermopower (S(ab)) increases slowly and the room-temperature S(ab) for Ca(3)Co(3.2)Cu(0.8)O(9) is about 17% larger than that of the undoped sample. As a result, the power factor along the ab-plane is enhanced by about 3.8 times compared to the undoped sample. The results are suggested to originate from the variations of carrier concentration and electronic correlation in this system via the different Cu-doping states: Cu(3+)/Cu(2+) (Cu(3+) major) into the CoO(2) layer for x ≤ 0.4, while Cu(2+)/Cu(3+) (Cu(2+) major) into the Ca(2)CoO(3) layers for x > 0.4.  相似文献   

14.
The partial substitution of nickel by iron in the body centered tetragonal crystal structure of the ternary compound (Fe x Ni1–x )11Se8 is restricted to the range of 0.04<x<0.23 at 580°C. The magnetic properties of samples with different compositions were studied by susceptibility measurements in the temperature region from 100 to 300 K. The continuous addition of Fe atoms resulted in a decreasing temperature dependence of the magnetic susceptibilities. Only for compositions withx0.14 an approximatedCurie—Weiss behaviour was observed. The Fe-rich samples (x>0.14) showed a very high constant paramagnetism which could not be interpreted asPauli paramagnetism. The evaluation of magnetic moments was based on the assumption that only the Fe atoms contribute to the temperature dependence of the magnetic susceptibilities. The actual value of the magnetic moments is supposed to be affected by magnetic interactions between neighbouring Fe atoms. The extrapolation of the magnetic moments towardsx=0 is compatible with a magnetic moment of 3.87 B corresponding to three unpaired d-electrons per Fe atom. According to the negativeWeiss constants derived fromCurie—Weiss law antiferromagnetic interactions at low temperatures can be expected.

Mit 3 Abbildungen  相似文献   

15.
In this study,large-scale Te-doped polycrystalline SnSe nanopowders were synthesized by a facile hydrothermal approach and the effect of Te doping on the thermoelectric properties of SnSe was fully investigated.It is found that the carrier concentration increases due to the reduction of band gap by alloying with Te,which contributes to significant enhancement of electrical conductivity especially at room temperature.Combined with the moderated Seebeck coefficient,a high power factor of 4.59μW cm ~1 K ~2 is obtained at 773 K.Furthermore,the lattice the rmal conductivity is greatly reduced upon Te substitution owing to the atomic point defect scattering.Benefiting from the synergistically optimized both electrical-and thermal-transport properties by Te-doping,thermoelectric performance of polycrystalline SnSe is enhanced in the whole temperature range with a maximum ZT of-0.79 at a relatively low temperature(773 K) for SnSe_(0.85)Te_(0.15).This study provides a low-cost and simple lowtemperature method to mass production of SnSe with high thermoelectric performance for practical applications  相似文献   

16.
We report for the first time the syntheses of electron-precise/deficient alloys, Ln5-xCaxGe4 (Ln = La, Ce; x = 3.37, 3.66, 3.82 for La; x = 3.00, 3.20, 3.26 for Ce), in the metal-rich R5Tt4 Zintl system (R = rare earth metal; Tt = Si, Ge). The new alloys extend the phase width from electron-rich to open-shell electron-deficient region in the metal-rich Zintl system and demonstrate possible occurrence of varied electron deficiencies in Zintl phases without structural changes, as a result of other existing structure-forming factors.  相似文献   

17.
Extended X-ray absorption fine structure (EXAFS) has been utilized to investigate the local atomic structure around Th, U, and Pu atoms in polycrystalline mixed dioxides Th(1-x)M(x)O2 (with M = U, Pu) for x ranging from 0 to 1. The composition dependence of the two first-coordination-shell distances was measured throughout the entire composition range for both solid solutions. The first-shell distances vary slightly across the solid-solution composition with values close to those of the pure dioxide parents, indicating a bimodal cation-oxygen distribution. In contrast, the second-shell distance varies strongly with composition, with values close to the weighted amount average distances. Nevertheless, in both systems, the lattice cell parameters, deduced from the first- and second-shell bond determined by EXAFS, are very close to those measured from X-ray diffraction (XRD). They vary linearly with composition, accurately following Vegard's law.  相似文献   

18.
Epitaxial thin films of titanium perovskite oxyhydride ATiO(3-x)H(x) (A = Ba, Sr, Ca) were prepared by CaH(2) reduction of epitaxial ATiO(3) thin films deposited on a (LaAlO(3))(0.3)(SrAl(0.5)Ta(0.5)O(3))(0.7) substrate. Secondary ion mass spectroscopy detected a substantial amount and uniform distribution of hydride within the film. SrTiO(3)/LSAT thin film hydridized at 530 °C for 1 day had hydride concentration of 4.0 × 10(21) atoms/cm(3) (i.e., SrTiO(2.75)H(0.25)). The electric resistivity of all the ATiO(3-x)H(x) films exhibited metallic (positive) temperature dependence, as opposed to negative as in BaTiO(3-x)H(x) powder, revealing that ATiO(3-x)H(x) are intrinsically metallic, with high conductivity of 10(2)-10(4) S/cm. Treatment with D(2) gas results in hydride/deuteride exchange of the films; these films should be valuable in further studies on hydride diffusion kinetics. Combined with the materials' inherent high electronic conductivity, new mixed electron/hydride ion conductors may also be possible.  相似文献   

19.
The effect of simultaneous substitutions of Ca at A site and Nb or Ta at B site in pyrochlore-type solid solutions: (Ca(x)Gd(1-x))(2)(Zr(1-x)M(x))(2)O(7) (x = 0.1, 0.2, 0.3, 0.4, 0.5 and M = Nb or Ta) were studied by powder X-ray diffraction (XRD), FT NIR Raman spectroscopic techniques and transmission electron microscopy. The solid solutions were prepared by the conventional high-temperature ceramic route. The XRD results and Rietveld analysis revealed that the defect fluorite structure of Gd(2)Zr(2)O(7) progressively changed to a more ordered pyrochlore phase by simultaneous substitutions at A and B sites. Raman spectroscopy reveals the progressive ordering in the anion sublattice with simultaneous doping. High-resolution images and selected-area electron diffraction patterns obtained from TEM confirms the XRD and Raman spectroscopic results. High-temperature XRD studies show that the lattice expansion coefficient in these pyrochlore oxides is of the order of 10(-6) K(-1). Lattice thermal expansion coefficient increases with increase of disorder in pyrochlore oxides, and hence the variation of thermal expansion coefficient with composition is also a good indicator of disordering in pyrochlore-type oxides. The ionic conducting properties of the samples were characterised by impedance spectroscopy, and it was found that Nb-doped compositions show a considerable change in conductivity near the phase boundary of disordered pyrochlore and defect fluorite phases.  相似文献   

20.
High-quality CdSxSe1-x nanobelts of variable composition (0 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号