首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influences of mass transfer and adsorption-desorption kinetics on the binding of staphylococcal enterotoxin B (SEB) to an affinity resin with the peptide ligand, Tyr-Tyr-Trp-Leu-His-His (YYWLHH) have been studied. The bed and particle porosities, the axial dispersion coefficient and the pore diffusivity were measured using pulse experiments under unretained conditions. Adsorption isotherms for SEB on YYWLHH resins with peptide densities in the range from 6 to 220 micromol/g were measured and fitted to a bi-Langmuir equation. At peptide densities below 9 micromol/g and above 50 micromol/g, dissociation constants were lower (2 x 10(-3) to 7 x 10(-3) mol/m3), and binding capacities were larger (43-47 mg SEB/g). In the range from 9 to 50 micromol/g dissociation constants were larger (13 x 10(-3) to 24 x 10(-3) mol/m3) and capacities were lower (33-37 mg SEB/g). These observations are consistent with a transition from single point attachment of the protein to the ligand at low peptide densities to multipoint attachment at high peptide densities. The general rate (GR) model of chromatography was used to fit experimental breakthrough curves under retained conditions to determine the intrinsic rate constants for adsorption, which varied from 0.13 to 0.50 m3 mol(-1) s(-1), and exhibited no clear trend with increasing peptide density. An analysis of the number of transfer units for the various mass transfer steps in the column indicated that film mass transfer, pore diffusion (POR) and the kinetics of adsorption can all play an important role in the overall rate of adsorption, with the intrinsic adsorption step apparently being the rate determining step at peptide densities below 50 micromol/g.  相似文献   

2.
Hydrophobic charge‐induction chromatography is a new technology for antibody purification. To improve antibody adsorption capacity of hydrophobic charge‐induction resins, new poly(glycidyl methacrylate)‐grafted hydrophobic charge‐induction resins with 5‐aminobenzimidazole as a functional ligand were prepared. Adsorption isotherms, kinetics, and dynamic binding behaviors of the poly(glycidyl methacrylate)‐grafted resins prepared were investigated using human immunoglobulin G as a model protein, and the effects of ligand density were discussed. At the moderate ligand density of 330 μmol/g, the saturated adsorption capacity and equilibrium constant reached the maximum of 140 mg/g and 25 mL/mg, respectively, which were both much higher than that of non‐grafted resin with same ligand. In addition, effective pore diffusivity and dynamic binding capacity of human immunoglobulin G onto the poly(glycidyl methacrylate)‐grafted resins also reached the maximum at the moderate ligand density of 330 μmol/g. Dynamic binding capacity at 10% breakthrough was as high as 76.3 mg/g when the linear velocity was 300 cm/h. The results indicated that the suitable polymer grafting combined with the control of ligand density would be a powerful tool to improve protein adsorption of resins, and new poly(glycidyl methacrylate)‐grafted hydrophobic charge‐induction resins have a promising potential for antibody purification applications.  相似文献   

3.
In this study, two polymeric resins with different pore sizes were synthesized to study comparative adsorption of reactive black KNB dye. Styrene-divinylbenzene copolymer resin NG-8 has an average pore size of 3.82 nm, about half of that of polydivinylbenzene resin NG-7 (6.90 nm). NG-8 also has a surface acidity about 4 times that of NG-7, resulting in a much more negative surface of the former resin as compared to the latter at pH 6.05. Equilibrium adsorption of KNB was significantly influenced by the surface functionality of the resins, as evidenced by the observations that NG-8 adsorbed constantly less KNB than NG-7 and that the presence of CaCl2 enhanced the adsorption by both resins. The intra-particle diffusion appears to be the primary rate-limiting process. While the pores of both resins are accessible to KNB, the slower adsorption by NG-8 than by NG-7 suggests that the smaller pores of NG-8 further retard the intra-particle diffusion of KNB.  相似文献   

4.
Experimental determination and modeling of IgG binding on a new protein A adsorbent based on a macroporous resin were performed. The new adsorbent consists of polymeric beads based on hydrophilic acrylamido and vinyl monomers with a pore structure optimized to allow favorable interactions of IgG with recombinant protein A coupled to the resin. The particles have average diameter of 57 μm and a narrow particle size distribution. The IgG adsorption equilibrium capacity is 46 mg/cm3 and the effective pore diffusivity determined from pulse response experiments for non-binding conditions is 8.0 × 10−8 cm2/s. The IgG adsorption kinetics can be described with the same effective diffusivity by taking into account a heterogeneous binding mechanism with fast binding sites, for which adsorption is completely diffusion controlled, and slow binding sites for which adsorption is controlled by the binding kinetics. As a result of this mechanism, the breakthrough curve exhibits a tailing behavior, which appears to be associated with the slow binding sites. A detailed rate model taking into account intraparticle diffusion and binding kinetics is developed and is found capable of predicting both batch adsorption and breakthrough behavior over an ample range of experimental conditions. The corresponding effective diffusivity is independent of protein concentration in solution over the range 0.2–2 mg/cm3 and of protein binding as a result of the large pore size of the support matrix. Overall, the small particle size and low diffusional hindrance allow capture of IgG with short residence times while attaining substantial dynamic binding capacities.  相似文献   

5.
The binding capacity and adsorption kinetics of a monoclonal antibody (mAb) are measured for experimental cation exchangers obtained by grafting dextran polymers to agarose beads and compared with measurements for two commercial agarose-based cation exchangers with and without dextran grafts. Introduction of charged dextran polymers results in enhanced adsorption kinetics despite a dramatic reduction of the accessible pore size as determined by inverse size-exclusion chromatography. Incorporation of neutral dextran polymers in a charged agarose bead results instead in substantially lower binding capacities. The effective pore diffusivities obtained from batch uptake curves increase substantially as the protein concentration is reduced for the resins containing charged dextran grafts, but are much less dependent on protein concentration for the resins with no dextran or uncharged dextran grafts. The batch uptake results are corroborated by microscopic observations of transient adsorption in individual particles. In all cases studied, the adsorption kinetics is characterized by a sharp adsorption front consistent with a shell-progressive, diffusion limited mechanism. Greatly enhanced transport rates are obtained with an experimental resin containing charged dextran grafts with effective pore diffusivities that are 1-9 times larger than the free solution diffusivity and adsorption capacity approaching 300 mg/cm3 of particle volume.  相似文献   

6.
A mesoporous molecular sieve silicate, SBA-15, with three pore sizes (38.1 A, 77.3 A, and 240 A) has been synthesized using a non-ionic, tri-block copolymer as a template in a sol-gel method. The effects of synthesis conditions on the pore size and pore-size distribution of this adsorbent have been described. The adsorption of proteins on these crystalline, ordered, materials has been studied. The kinetics of adsorption and equilibrium capacity have been probed with three proteins of different dimensions. The effects of electrostatic interactions and protein size are illustrated. It has been shown that SBA-15 materials can be tailored to show size selectivity for proteins, and very high capacities (450 mg/g) can be obtained. Furthermore, the rates of adsorption are shown to be dependent on the pore size, protein structure and solution pH.  相似文献   

7.
The ion-exchange adsorption kinetics of bovine serum albumin (BSA) and gamma-globulin to an anion exchanger, DEAE Spherodex M, has been studied by batch adsorption experiments. Various diffusion models, that is, pore diffusion, surface diffusion, homogeneous diffusion and parallel diffusion models, are analyzed for their suitabilities to depict the adsorption kinetics. Protein diffusivities are estimated by matching the models with the experimental data. The dependence of the diffusivities on initial protein concentration is observed and discussed. The adsorption isotherm of BSA is nearly rectangular, so there is little surface diffusion. As a result, the surface and homogeneous diffusion models do not fit to the kinetic data of BSA adsorption. The adsorption isotherm of gamma-globulin is less favorable, and the surface diffusion contributes greatly to the mass transport. Consequently, both the surface and homogeneous diffusion models fit to the kinetic data of gamma-globulin well. The adsorption kinetics of BSA and gamma-globulin can be very well fitted by parallel diffusion model, because the model reflects correctly the intraparticle mass transfer mechanism. In addition, for both the favorably bound proteins, the pore diffusion model fits the adsorption kinetics reasonably well. The results here indicate that the pore diffusion model can be used as a good approximate to depict protein adsorption kinetics for protein adsorption systems from rectangular to linear isotherms.  相似文献   

8.
利用大孔吸附树脂Amberlite XAD16及HZ816对红霉素的吸附动力学实验,研究了温度、初始浓度、溶液pH值及搅拌速度等因素对吸附过程的影响.结果表明,Amberlite XAD16及HZ816对红霉素的吸附速率符合一级吸附动力学方程及颗粒内扩散方程,过程受液膜扩散阻力及颗粒内扩散阻力共同影响.同时,表观吸附速率常数与颗粒内扩散速率常数均随着温度的升高而增大,随着初始浓度的增大而增大,随着溶液pH值增大而增大,随着搅拌速度加快而增大.  相似文献   

9.
Adsorption properties of a set of polymethacrylate-based cation exchangers designed for purification of monoclonal antibodies were investigated. The materials differed significantly in the density of sulphoisobutyl ligand groups. The ligand density had a pronounced effect on the static adsorption capacity of a polyclonal human immunoglobulin G. An optimal ligand density was observed at any pH and NaCl concentration tested when sharp optima were observed at low pH and ionic strength values. This was caused by effective clogging of pore mouth at high ligand densities. An anomalous effect of ionic strength was observed for the adsorbents with the high ligand density when the adsorption capacity increased with the addition of NaCl at low pH.  相似文献   

10.
Increased recombinant protein expression yields and a large installed base of manufacturing facilities designed for smaller bulk sizes has led to the need for high capacity chromatographic resins. This work explores the impact of three pore sizes (with dextran distribution coefficients of 0.4, 0.53, and 0.64), dextran surface extender concentration (11–20 mg/mL), and ligand density (77–138 μmol H+/mL resin) of cation exchange resins on the dynamic binding capacity of a therapeutic antibody. An intermediate optimal pore size was identified from three pore sizes examined. Increasing ligand density was shown to increase the critical ionic strength, while increasing dextran content increased dynamic binding capacity mainly at the optimal pore size and lower conductivities. Dynamic binding capacity as high as 200 mg/mL was obtained at the optimum pore size and dextran content.  相似文献   

11.
本文以甲基丙烯酸缩水甘油酯为单体,三聚异氰尿酸三烯丙酯和二乙烯基苯为交联剂,甲苯和正庚烷为有机致孔剂,用原位聚合的方法合成新水性高分子载体。胺化反应后,得到含二乙胺基羟丙基的阴离子交换剂(树脂A)。研究了不同的合成配比对该树脂吸附牛血清白蛋白行为的影响,从而获得一个较佳的合成配方。在此基础上,采用固体颗粒与有机溶剂联合致孔模式,以硫酸钠颗粒为固体致孔剂,制备新型双孔离子交换剂(树脂B)。比较了两种树脂的孔结构及其对牛血清蛋白的吸附行为。结果表明,树脂A和树脂B均具有较高的吸附容量和较好的机械性能。由于树脂B内含有流动相可以对流通过的大孔结构,因此同时还具有相对较好的吸附动力学性能。  相似文献   

12.
The interest in understanding fundamental mechanisms underlying chromatography drastically increased over the past decades resulting in a whole variety of mostly semi-empirical models describing protein retention. Experimental data about the molecular adsorption mechanisms of lysozyme on different chromatographic ion-exchange materials were used to develop a mechanistical model for the adsorption of lysozyme onto a SP Sepharose FF surface based on molecular dynamic simulations (temperature controlled NVT simulations) with the Amber software package using a force-field based approach with a continuum solvent model. The ligand spacing of the adsorbent surface was varied between 10 and 20 Å. With a 10 Å spacing it was possible to predict the elution order of lysozyme at different pH and to confirm in silico the pH-dependent orientation of lysozyme towards the surface that was reported earlier. The energies of adsorption at different pH values were correlated with isocratic and linear gradient elution experiments and this correlation was used to predict the retention volume of ribonuclease A in the same experimental setup only based on its 3D structure properties. The study presents a strong indication for the validity of the assumption, that the ligand density of the surface is one of the key parameters with regard to the selectivity of the adsorbent, suggesting that a high ligand density leads to a specific interaction with certain binding sites on the protein surface, while at low ligand densities the net charge of the protein is more important than the actual charge distribution.  相似文献   

13.
Protein adsorption equilibria and kinetics are obtained experimentally for two multimodal cation exchange resins—Nuvia cPrime, which is based on a polymeric matrix, and Capto MMC, which is based on an agarose matrix. In both resins, the ligand contains a phenyl group, a carboxyl group, and a peptide bond but with a different arrangement. Transmission electron microscopy and inverse size exclusion chromatography indicate a bimodal distribution of pores in Nuvia cPrime, including small pores with 10 nm radius and pores larger than 400 nm, and a monodispersed distribution of pores in Capto MMC, averaging 32 nm in radius. Potentiometric titration curves show similar buffering ranges and pK a values for the ligands in both resins and a slightly higher ligand density for Nuvia cPrime. Equilibrium binding capacities for lysozyme and a monoclonal antibody (mAb) are also similar for both resins at comparable pH and salt concentrations, although Capto MMC shows a weaker dependence on salt concentration as a result of its more hydrophobic character. The main difference is the adsorption kinetics of the mAb, which is the larger of the two proteins studied. For both resins, as shown by means of confocal laser scanning miscopy, the adsorption kinetics is controlled by pore diffusion. Capto MMC with its smaller pores has a slower rate of mass transfer than Nuvia cPrime. As a result, for the mAb, much higher column dynamic binding capacities are obtained for Nuvia cPrime than for Capto MMC.  相似文献   

14.
Dynamic binding capacity (DBC) of a monoclonal antibody on agarose based strong cation exchange resins is determined as a function of resin ligand density, apparent pore size of the base matrix, and protein charge. The maximum DBC is found to be unaffected by resin ligand density, apparent pore size, or protein charge within the tested range. The critical conductivity (conductivity at maximum DBC) is seen to vary with ligand density. It is hypothesized that the maximum DBC is determined by the effective size of the proteins and the proximity to which they can approach one another. Once a certain minimum resin ligand density is supplied, additional ligand is not beneficial in terms of resin capacity. Additional ligand can provide flexibility in designing ion exchange resins for a particular application as the critical conductivity could be matched to the feedstock conductivity and it may also affect the selectivity.  相似文献   

15.
Kinetics of bovine serum albumin and ovalbumin adsorption by nanoporous carbons with different main pore sizes (1.6, 5, 7.8 and 28 nm) was studied. Experimental kinetics curves were well described by multi-exponential equation with different number of exponents (from 1 to 4). Protein adsorption kinetics showed significant dependence on pore size of carbonaceous adsorbent. Correlation between pore size distribution and amount of protein adsorbed revealed threshold pore size 7.3 nm for BSA and 6.8 nm for OVA, which are close to hydrodynamic diameter of protein molecules. The fastest and the highest adsorption of proteins were observed in carbons having developed porosity with pore sizes larger than 15 nm.  相似文献   

16.
The adsorption isotherms of four model proteins (lysozyme, α-lactalbumin, ovalbumin, and BSA) on eight commercial phenyl hydrophobic interaction chromatography media were measured. The isotherms were softer than those usually seen in ion-exchange chromatography of proteins, and the static capacities of the media were lower, ranging from 30 to 110 mg/mL, depending on the ammonium sulfate concentration and the protein and adsorbent types. The protein-accessible surface area appears to be the main factor determining the binding capacity, and little correlation was seen with the protein affinities of the adsorbents. Breakthrough experiments showed that the dynamic capacities of the adsorbents at 10% breakthrough were 20-80% of the static capacities, depending on adsorbent type. Protein diffusivities in the adsorbents were estimated from batch uptake experiments using the pore diffusion and homogeneous diffusion models. Protein transport was affected by the adsorbent pore structures. Apparent diffusivities were higher at lower salt concentrations and column loadings, suggesting that adsorbed proteins may retard intraparticle protein transport. The diffusivities estimated from the batch uptake experiments were used to predict column breakthrough behavior. Analytical solutions developed for ion-exchange systems were able to provide accurate predictions for lysozyme breakthrough but not for ovalbumin. Impurities in the ovalbumin solutions used for the breakthrough experiments may have affected the ovalbumin uptake and led to the discrepancies between the predictions and the experimental results.  相似文献   

17.
Adsorption kinetics of bovine serum albumin (BSA) and bovine hemoglobin (bHb) to Cibacron Blue 3GA (CB) modified Sepharose CL-6B has been studied. The effects of liquid-phase ionic strength and CB coupling density on the uptake rates of these two proteins in Tris-HCl buffer (pH 7.5) were evaluated by effective pore diffusivity derived from a pore diffusion model. The results showed that despite their similar molecular masses and sizes, the effects of aqueous-phase ionic strength and CB density on the effective pore diffusivities of BSA and bHb were distinctly different. The effective pore diffusivity of BSA to CB-Sepharose increased significantly with decreasing CB density and increasing liquid-phase ionic strength. This was considered due to the decrease in electrostatic repulsion between the BSA and CB molecules of like charge. That is, the increase in ionic strength and the decrease in CB coupling density reduced the electrostatic hindrance effect on BSA diffusion to CB-Sepharose, facilitating the hindered pore diffusion. In contrast, because of the higher isoelectric point of bHb (7.0) compared to BSA (4.7), bHb suffered little electrostatic hindrance effect during its diffusion to CB-Sepharose. Therefore, the effective pore diffusivity of bHb was unchanged with the change in liquid-phase ionic strength and CB coupling density.  相似文献   

18.
A method for fast in situ measurement of adsorption kinetics based on a finite bath was developed. We modified the conventional finite bath by replacing the external loop by a dip probe which enables in situ measurement of the concentration change in the contactor. Deposition of adsorbent particles on the reflection surface of the dip probe compromised measurements. Different membranes, a polyamide, a polypropylene and a nylon membrane were tested to protect the internal reflection surface of the dip probe from fouling with adsorbent particles. The nylon membrane provided efficient protection and high mass transfer evaluated by response time experiments. Unspecific adsorption of the model protein on the membrane could also be excluded. To corroborate the measurements of the dip probe the results were compared to a conventional finite bath and to a shallow-bed. The uptake curves for human polyclonal IgG at different concentrationes (0.1-3 g/l) on rProtein A Sepharose FF and MabSelect were used as model system. The effective diffusion coefficients were determined using a pore diffusion model. These values were in good agreement for all methods.  相似文献   

19.
A new thermodynamic model is derived that describes both loading and pulse-response behavior of proteins in hydrophobic interaction chromatography (HIC). The model describes adsorption in terms of protein and solvent activities, and water displacement from hydrophobic interfaces, and distinguishes contributions from ligand density, ligand type and protein species. Experimental isocratic response and loading data for a set of globular proteins on Sepharose™ resins of various ligand types and densities are described by the model with a limited number of parameters. The model is explicit in ligand density and may provide insight into the sensitivity of protein retention to ligand density in HIC as well as the limited reproducibility of HIC data.  相似文献   

20.
This work investigates the effects of ionic strength and protein characteristics on adsorption and transport of lysozyme, BSA, and IgG in agarose-based cation exchangers with short ligand chemistry and with charged dextran grafts. In all cases, the adsorption equilibrium capacity decreased with increasing salt. However, the adsorption kinetics was strongly influenced by the adsorbent structure and protein characteristics. For the smaller and positively charged lysozyme, the effective pore diffusivity was only weakly dependent on salt for the dextran-free media, but declined sharply with salt for the dextran-grafted materials. For this protein, the dextran grafts enhanced the adsorption kinetics at low salt, but the enhancement vanished at higher salt concentrations. For BSA, which was near its isoelectric point for the experimental conditions studied, the effective diffusivity was low for all materials and almost independent of salt. Finally, for the larger and positively charged IgG, the effective diffusivity varied with salt, reaching an apparent maximum at intermediate concentrations for both dextran-free and dextran-grafted media with the kinetics substantially enhanced by the dextran grafts for these conditions. Microscopic observations of the particles during protein adsorption at low ionic strengths showed transient patterns characterized by sharp adsorption fronts for all materials. A theory taking into account surface or adsorbed phase diffusion with electrostatic coupling of diffusion fluxes is introduced to explain the mechanism for the enhanced adsorption kinetics observed for the positively charged proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号