首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We describe experiments using billiard-shaped microwave cavities, to test ideas in quantum chaos. The experimental method for observing cavity resonances to obtain the eigenvalues, and the advantages and limitations of the techniques, including the influence of absorption, are discussed. An experimental technique to obtain a 2D mapping of the wavefunction is described. Results are displayed for 36 of the low-lying wavefunctions of a Sinai billiard cavity consisting of a central disc in a rectangular enclosure. The wavefunctions demonstrate the influence of classical periodic orbits (PO), of which there are two types: non-isolated PO, which avoid the central disc, and isolated PO, which hit the central disc. Scarred states, including those associated with isolated PO, are directly observed.  相似文献   

3.
《Physics letters. A》1999,263(3):157-166
For a billiard of a general shape a transformation is introduced which projects the boundary on the unit circle. This introduces a non-Euclidean metric on the plane which contains all relevant information of the shape of the boundary. Classically the straight lines of the free motion correspond to geodesics and quantum mechanically the energy spectrum is that of Laplace–Beltrami operator with Dirichlet boundary conditions on the unit circle. The geodesic equations are highly non-linear. Nevertheless for the interval between two consecutive scatterings we have two integrals of motion, the kinetic energy and the angular momentum. This fact helps to solve explicitly the geodesic equations. These solutions can be used to derive interesting properties for the classical scattering. Quantum mechanically the spectrum of the above billiards is obtained for certain parameter values both perturbatively for small values of the parameter and also using a diagonalization procedure. This method is applicable to any particular form of a billiard for which the transformation is invertible and can be used on one hand as a quick method of approximate spectral determination and as a theoretical tool to analyse specific properties of integrability and chaos through the associated connection form and the Laplace–Beltrami operator. Finally as a first indication of the potentiality of this method we present a graphical test where for very small deviations from the circular billiard an integrable and two non-integrable billiards can be distinguished by the distribution of the differences of the first order corrections while this distinction is not evident by the usual test for the nearest neighbor level spacings.  相似文献   

4.
Conductance and shot noise of an open cavity with diffusive boundary scattering are calculated within the Boltzmann-Langevin approach. In particular, conductance contains a nonuniversal geometric contribution, originating from the presence of open contacts. Subsequently, universal expressions for multiterminal conductance and noise, valid for all chaotic cavities, are obtained classically, based on the fact that the distribution function in the cavity depends only on energy, and using the principle of minimal correlations.  相似文献   

5.
A recently proposed numerical technique for generation of high-quality unstructured meshes is combined with a finite-element method to solve the Helmholtz equation that describes the quantum mechanics of a particle confined in two-dimensional cavities. Different shapes are treated on equal footing, including Sinai, stadium, annular, threefold symmetric, mushroom, cardioid, triangle, and coupled billiards. The results are shown to be in excellent agreement with available measurements in flat microwave resonator counterparts with nonintegrable geometries.  相似文献   

6.
A fundamental result in nonrelativistic quantum nonlinear dynamics is that the spectral statistics of quantum systems that possess no geometric symmetry, but whose classical dynamics are chaotic, are described by those of the Gaussian orthogonal ensemble (GOE) or the Gaussian unitary ensemble (GUE), in the presence or absence of time-reversal symmetry, respectively. For massless spin-half particles such as neutrinos in relativistic quantum mechanics in a chaotic billiard, the seminal work of Berry and Mondragon established the GUE nature of the level-spacing statistics, due to the combination of the chirality of Dirac particles and the confinement, which breaks the time-reversal symmetry. A question is whether the GOE or the GUE statistics can be observed in experimentally accessible, relativistic quantum systems. We demonstrate, using graphene confinements in which the quasiparticle motions are governed by the Dirac equation in the low-energy regime, that the level-spacing statistics are persistently those of GOE random matrices. We present extensive numerical evidence obtained from the tight-binding approach and a physical explanation for the GOE statistics. We also find that the presence of a weak magnetic field switches the statistics to those of GUE. For a strong magnetic field, Landau levels become influential, causing the level-spacing distribution to deviate markedly from the random-matrix predictions. Issues addressed also include the effects of a number of realistic factors on level-spacing statistics such as next nearest-neighbor interactions, different lattice orientations, enhanced hopping energy for atoms on the boundary, and staggered potential due to graphene-substrate interactions.  相似文献   

7.
We report on experimental observations of chaotic and regular motion of ultracold atoms confined by a billiard-shaped optical dipole potential induced by a rapidly scanning laser beam. To investigate the dynamics of the atoms confined by such an "atom-optics" billiard we measure the decay of the number of trapped atoms through a hole on the boundary. A fast and purely exponential decay, the clear signature of chaotic motion, is found for a stadium billiard, but not for a circular or an elliptical billiard, in agreement with theory. We also investigated the effects of decoherence, velocity spread, and gravity on regular and chaotic motion.  相似文献   

8.
We present numerical and experimental results for the development of islands of stability in atom-optics billiards with soft walls. As the walls are soften, stable regions appear near singular periodic trajectories in converging (focusing) and dispersing billiards, and are surrounded by areas of “stickiness” in phase space. The size of these islands depends on the softness of the potential in a very sensitive way.  相似文献   

9.
In this work, we perform a statistical study on Dirac Billiards in the extreme quantumlimit (a single open channel on the leads). Our numerical analysis uses a large ensembleof random matrices and demonstrates the preponderant role of dephasing mechanisms in suchchaotic billiards. Physical implementations of these billiards range from quantum dots ofgraphene to topological insulators structures. We show, in particular, that the role offinite crossover fields between the universal symmetries quickly leaves the conductance tothe asymptotic limit of unitary ensembles. Furthermore, we show that the dephasingmechanisms strikingly lead Dirac billiards from the extreme quantum regime to thesemiclassical Gaussian regime.  相似文献   

10.
Manojit Roy  R E Amritkar 《Pramana》1997,48(1):271-285
The effect of noise in inducing order on various chaotically evolving systems is reviewed, with special emphasis on systems consisting of coupled chaotic elements. In many situations it is observed that the uncoupled elements when driven by identical noise, show synchronization phenomena where chaotic trajectories exponentially converge towards a single noisy trajectory, independent of the initial conditions. In a random neural network, with infinite range coupling, chaos is suppressed due to noise and the system evolves towards a fixed point. Spatiotemporal stochastic resonance phenomenon has been observed in a square array of coupled threshold devices where a temporal characteristic of the system resonates at a given noise strength. In a chaotically evolving coupled map lattice with the logistic map as local dynamics and driven by identical noise at each site, we report that the number ofstructures (a structure is a group of neighbouring lattice sites for values of the variable follow which the certain predefined pattern) follows a power-law decay with the length of the structure. An interesting phenomenon, which we callstochastic coherence, is also reported in which the abundance and lifetimes of these structures show characteristic peaks at some intermediate noise strength.  相似文献   

11.
Superpersistent chaotic transients are characterized by an exponential-like scaling law for their lifetimes where the exponent in the exponential dependence diverges as a parameter approaches a critical value. So far this type of transient chaos has been illustrated exclusively in the phase space of dynamical systems. Here we report the phenomenon of noise-induced superpersistent transients in physical space and explain the associated scaling law based on the solutions to a class of stochastic differential equations. The context of our study is advective dynamics of inertial particles in open chaotic flows. Our finding makes direct experimental observation of superpersistent chaotic transients feasible. It also has implications to problems of current concern such as the transport and trapping of chemically or biologically active particles in large-scale flows.  相似文献   

12.
We report numerical results of an investigation of quantum transport for a weakly opened integrable circle and chaotic stadium billiards with a pair of conducting leads. While the statistics of spacings of resonance energies commonly follow the Wigner (GOE)-like distribution, the electric conductance as a function of the Fermi wavenumber shows characteristic noisy fluctuations associated with a typical set of classical orbits unique for both billiards. The wavenumber autocorrelation for the conductance is stronger in the stadium than the circle billiard, which we show is related to the length spectrum of classical short orbits. We propose an explanation of these contrasts in terms of the effect of phase decoherence due to the underlying chaotic dynamics.  相似文献   

13.
本文讨论正方形量子台球的输运性质,考虑电子以费米能量穿过台球区域,在台球出口和入口处对入射和出射波函数采用基尔霍夫散射.采用微扰论的Dyson方程得到半经典格林函数,并把赝路径半经典近似作微扰展开得到体系的传输矩阵元.比较了传输矩阵元的傅立叶变换谱的峰位置与腔内自由电子经典轨道长度,发现在精度允许范围内它们符合的很好.  相似文献   

14.
本文讨论正方形量子台球的输运性质,考虑电子以费米能量穿过台球区域,在台球出口和入口处对入射和出射波函数采用基尔霍夫散射.采用微扰论的Dyson方程得到半经典格林函数,并把赝路径半经典近似作微扰展开得到体系的传输矩阵元.比较了传输矩阵元的傅立叶变换谱的峰位置与腔内自由电子经典轨道长度,发现在精度允许范围内它们符合的很好.  相似文献   

15.
Equations that describe a ring system consisting of a closed circuit of n (n = 2, 3, 4, ...) unidirectionally coupled self-oscillation systems that exhibit chaotic dynamics are analyzed in the presence of external colored noise. For simplicity, detailed results of numerical calculations are presented for three oscillators. It is demonstrated that the external colored noise that is exerted upon partial oscillators of the ring system may facilitate the development of synchronous oscillations and reduce transient processes related to stabilization of chaotic synchronization. The effect is qualitatively interpreted. For comparison, numerical methods are employed to analyze the effect of external colored noise on an open circuit consisting of three oscillators.  相似文献   

16.
We study the decay properties of correlation functions in quantum billiards with surface or bulk disorder. The quantum system is modeled by means of a tight-binding Hamiltonian with diagonal disorder, solved on LxL clusters of the square lattice. The correlation function is calculated by launching the system at t=0 into a wave function of the regular (clean) system and following its time evolution. The results show that the correlation function decays exponentially with a characteristic correlation time (inverse of the Lyapunov exponent lambda). For small enough disorder the Lyapunov exponent is approximately given by the imaginary part of the self-energy induced by disorder. On the other hand, if the scaling of the Lyapunov exponent with L is investigated by keeping constant l/L, where l is the mean free path, the results show that lambda is proportional to 1/L.  相似文献   

17.
We use a semiclassical approximation to study the transport through the weakly open chaotic Sinai quantum billiards which can be considered as the schematic of a Sinai mesoscopic device,with the diffractive scatterings at the lead openings taken into account.The conductance of the ballistic microstructure which displays universal fluctuations due to quantum interference of electrons can be calculated by Landauer formula as a function of the electron Fermi wave number,and the transmission amplitude can be expressed as the sum over all classical paths connecting the entrance and the exit leads.For the Sinai billiards,the path sum leads to an excellent numerical agreement between the peak positions of power spectrum of the transmission amplitude and the corresponding lengths of the classical trajectories,which demonstrates a good agreement between the quantum theory and the semiclassical theory.  相似文献   

18.
We report a general phenomenon concerning the effect of noise on phase synchronization in coupled chaotic oscillators: the average phase-synchronization time exhibits a nonmonotonic behavior with the noise amplitude. In particular, we find that the time exhibits a local minimum for relatively small noise amplitude but a local maximum for stronger noise. We provide numerical results, experimental evidence from coupled chaotic circuits, and a heuristic argument to establish the generality of this phenomenon.  相似文献   

19.
A chaotic attractor from a deterministic flow must necessarily possess a neutral direction, as characterized by a null Lyapunov exponent. We show that for a wide class of chaotic attractors, particularly those having multiple scrolls in the phase space, the existence of the neutral direction can be extremely fragile in the sense that it is typically destroyed by noise of arbitrarily small amplitude. A universal scaling law quantifying the increase of the Lyapunov exponent with noise is obtained. A way to observe the scaling law in experiments is suggested.  相似文献   

20.
We perform echo spectroscopy on ultracold atoms in atom-optics billiards to study their quantum dynamics. The detuning of the trapping laser is used to change the "perturbation", which causes a decay in the echo coherence. Two different regimes are observed: first, a perturbative regime in which the decay of echo coherence is nonmonotonic and partial revivals of coherence are observed in contrast with the predictions of random matrix theory. These revivals are more pronounced in traps with mixed dynamics as compared to traps where the dynamics is fully chaotic. Next, for stronger perturbations, the decay becomes monotonic and independent of the strength of the perturbation. In this regime no clear distinction can be made between chaotic traps and traps with mixed dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号