首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A fast and sensitive liquid chromatography/triple quadrupole tandem mass spectrometry (LC/MS/MS) method was developed for the simultaneous determination of morphine, codeine, 6‐acetylmorphine (6‐AM), cocaine and benzoylecgonine (BE) in hair. Pulverized hair samples were extracted with methanol, and a 50 µL supernatant aliquot was injected into the LC/MS/MS system. Chromatography was performed with an XBridge? phenyl column (3.5 µm particle size, 4.6 × 150 mm), and the mobile phase was composed of methanol and 10 mM ammonium acetate adjusted to pH 4.00 with 99% formic acid (95:5, v/v). A separation run with isocratic elution was completed in 10 min at a flow rate of 500 µL/min. Positive electrospray ionization and multiple reaction monitoring (MRM) with one precursor ion/product ion transition were used for the identification of each analyte. Deuterated analogues as internal standards were used for quantification and qualification. Linearity was established in the concentration range of 100–3000 pg/mg. The limits of detection were 10 pg/mg for morphine, codeine and 6‐AM; and 1 pg/mg for cocaine and BE. The precision and accuracy were determined by spiking hair samples at six concentration levels. For all analytes, the relative standard deviations of intra‐ and inter‐day precision were 0.1–6.3% and 1.5–10.6%, respectively. The accuracy ranged from 92.7 to 109.7%. The validated LC/MS/MS method was successfully applied to the analysis of 79 authentic hair samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Over recent years, hair has become the ideal matrix for retrospective investigation of chronic abuse, including for tramadol. However, in order to exclude the possibility of external contamination, it is also important to quantify simultaneously its main metabolite, O‐desmethyltramadol (M1), which presence in hair reflects systemic exposure. In the present study a methodology aimed at the simultaneous quantification of tramadol and M1 in human hair was developed and validated for the first time. After decontamination of hair samples (60 mg), tramadol and M1 were extracted with methanol in an ultrasonic bath (~5 h). Purification was performed by solid‐phase extraction using mixed‐mode extraction cartridges. Subsequently to derivatization, analysis was performed by gas chromatography–electron impact/mass spectrometry (GC‐EI/MS). The method proved to be selective. The regression analysis for both analytes was shown to be linear in the range of 0.1–20.0 ng/mg with correlation coefficients of 0.9995 and 0.9997 for tramadol and M1, respectively. The coefficients of variation oscillated between 3.85 and 13.24%. The limits of detection were 0.03 and 0.02 ng/mg, and the lower limits of quantification were 0.08 and 0.06 ng/mg for tramadol and M1, respectively. The proof of applicability was performed in hair samples from six patients undergoing tramadol therapy. All samples were positive for tramadol and M1. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
This article describes an easy and innovative extraction procedure for cocaine and its primary metabolite, benzoylecgonine (BE), from hair consisting of sonication with H2O/0.1% formic acid for 4 h. The same extract was used for screening with an enzyme-linked immunoassay (ELISA) and confirmation by liquid chromatography–tandem mass spectrometry (LC–MS/MS). For the ELISA screening test a cutoff of 0.5 ng/mg was used according to the Society of Hair Testing recommendations. LC–MS/MS limits of detection (LODs) were established to be 10 pg/mg and 1 pg/mg for cocaine and BE, respectively. Linearity was obtained over a range of 0.2–5 ng/mg for BE (target analyte) in the ELISA screening test, while in the LC–MS/MS method the range was 0.10–10 ng/mg for cocaine and 0.01–10 ng/mg for BE. Intra- and interbatch coefficients of variation and mean relative errors were less than 20% for all analytes and concentrations studied. The validated ELISA and LC–MS/MS methods were applied to 48 hair samples and the results of both methods were compared; ELISA demonstrated a sensitivity and specificity of 89.2% and 10.8%.  相似文献   

4.
A new, simple and rapid procedure has been developed and validated for the determination of cocaine and its main metabolite, benzoylecgonine, in human hair samples. After extraction from within the hair matrix by a mixture of methanol/hydrochloric acid (2:1) at 65 degrees C for 3 h, and sample cleanup by mixed-mode solid-phase extraction (SPE), the extracts were analyzed by gas chromatography/mass spectrometry (GC/MS), after derivatization with N-methyl-N-(trimethylsilyl)trifluoroacetamide with 5% chlorotrimethylsilane. Using a sample size of only 20 mg of hair, limits of detection (LODs) and quantitation (LOQs) were, respectively, 20 and 50 pg/mg for cocaine, and 15 and 50 pg/mg for benzoylecgonine, achieving the cut-off values proposed by the Society of Hair Testing for the analysis of these compounds in hair. The method was found to be linear (weighing factor of 1/x) between the LOQ and 20 ng/mg for both compounds, with correlation coefficients ranging from 0.9974 to 0.9996 for cocaine; and from 0.9981 to 0.9994 for benzoylecgonine. Intra- and interday precision and accuracy were in conformity with the criteria normally accepted in bioanalytical method validation. The sample cleanup step presented a mean absolute recovery greater than 90% for both compounds. The developed method may be useful in forensic toxicology laboratories for the analysis of cocaine and benzoylecgonine in hair samples, taking into account its speed (only 3 h are required for the extraction of the analytes from within the matrix, whereas 5 h or even overnight extractions have been reported) and the low limits achieved (using a single quadrupole mass spectrometer, which is available in most laboratories).  相似文献   

5.
Surface-activated chemical ionization (SACI) was employed for the analysis of cocaine and its metabolite, benzoylecgonine, extracted from hair. Following decontamination and acid hydrolysis procedures on the hair sample, the sample solution was diluted (1:10) and directly analyzed by liquid chromatography/surface-activated chemical ionization multiple collisional stage single reaction monitoring mass spectrometry (LC/SACI-MS(3)-SRM) without solid-phase extraction (SPE) pre-purification and concentration procedures. To increase the selectivity of the method, MS(3) was chosen instead of the less selective MS/MS. This data was compared with that achieved using gas chromatography/mass spectrometry (GC/MS), the reference method used by the Italian Government Institute of Health protocol. The limits of detection (LODs) were 0.003 ng/(mg hair) for cocaine and 0.02 ng/(mg hair) for benzoylecgonine and the limits of quantitation (LOQs) were 0.01 ng/(mg hair) for cocaine and 0.04 ng/(mg hair) for benzoylecgonine. The squared correlation coefficient (R(2)) of the calibration curve was 0.9887-0.9980 for cocaine and 0.9987-0.9997 for benzoylecgonine. The percent accuracy error was 2-5% for both cocaine and benzoylecgonine using the LC/SACI-MS(3)-SRM approach, whereas it was higher for benzoylecgonine (20-25%) using the LC/SACI-MS/MS-SRM approach compared with the GC/MS data due to hair matrix contamination. In both cases, high precision was achieved (1-3% precision error), which confirmed the stability of the developed methods.  相似文献   

6.
A high performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS) method for simultaneous screening and quantification of 28 drugs was developed and validated for 2.5 mg hair samples. Target drugs and their metabolites included amphetamines, cocaine, opioids, benzodiazepines, antidepressants, and hallucinogens. After decontamination, hair samples were extracted with 200 μL of a mixture of water: acetonitrile:1 M trifluoroacetic acid (80:10:10, v/v) using a 5 min simultaneous pulverization/extraction step. The extracts were analysed by HPLC-HRMS in an Orbitrap at a nominal resolution of 60,000, with concomitant in source collisional experiments (in source CID). Gradient elution on an Atlantis T3 column resolved 28 target compounds and 5 internal standards. Total chromatographic run time was 26 min. Calibration was achieved by linear regression analysis utilizing six calibration points; R2 ranged from 0.9964 to 0.9999, the limits of quantification were 0.1 ng/mg for 8 compounds, 0.2 ng/mg for 16 compounds and 0.5 ng/mg for 4 compounds; mean relative errors from -21% to +23% were obtained; relative standard deviation, used to estimate repeatability and intermediate reproducibility at three concentrations, was always less than 20%. Process efficiency and recoveries for all analytes were better than 65 and 73%, respectively, at any concentration. The method was applied to hair samples from forensic investigations that contained a broad assortment of drugs of abuse and pharmaceuticals. The use of concomitant HRMS full scan and CID afforded the possibility of retrospective analysis for discovering untargeted drugs.  相似文献   

7.
A fast and highly sensitive electrospray ionization tandem mass spectrometry (ESI-MS/MS) method has been developed for the simultaneous determination of morphine, 6-methylacetylmorphine (6-MAM), codeine, cocaine and benzoylecgonine (BZE) in hair from drug abusers. Pulverized hair samples were subjected to an optimized matrix solid phase dispersion (MSPD) procedure with alumina, followed by diluted hydrochloric acid elution on column solid-phase extraction (SPE) clean-up/pre-concentration. Alternatively, samples were also subjected to an optimized ultrasound assisted enzymatic hydrolysis (USEH) with Pronase E, followed by an off-line SPE clean up/pre-concentration procedure. Positive electrospray ionization and multiple reaction monitoring (MRM) with one precursor ion/product ion transition were used for the identification and quantification (deuterated analogues of each target as internal standards) of each analyte. The chromatographic pump and the autosampler were used for injecting the standards and the hair extracts (20 μL) as a flow injection analysis mode. The highest sensitivity was achieved when delivering the targets with an acetonitrile/water/formic acid (80/19.875/0.125) mixture. The limits of detection of the method were 39.2, 4.4, 6.8, 7.0 and 7.4 ng g(-1) for morphine, 6-MAM, codeine, cocaine and BZE, respectively. Relative standard deviations of intra- and inter-day precision were lower than 9 and 12%, respectively; whereas, analytical recoveries ranged from 96±5 to 106±4%. The developed method (MSPD-ESI-MS/MS) was applied to different hair samples from polydrug abusers, and results were statistically compared to those obtained after a conventional gas chromatography-mass spectrometry (GC-MS) analysis and also after USEH and ESI-MS/MS or GC-MS determinations.  相似文献   

8.
A gas chromatography/mass spectrometry (GC/MS) method was developed and validated for the determination of common drugs of abuse in Asia. The method was able to simultaneously quantify amphetamines (amphetamine; AP, methamphetamine; MA, methylenedioxy amphetamine; MDA, methylenedioxymeth mphetamine; MDMA, methylenedioxy ethylamphetamine; MDEA), ketamine (ketamine; K, norketamine; NK), and opiates (morphine; MOR, codeine; COD, 6-acetylmorphine; 6-AM) in human hair. Hair samples (25 mg) were washed, cut, and incubated overnight at 25 degrees C in methanol/trifluoroacetic acid (methanol/TFA). The samples were extracted by solid-phase extraction (SPE), derivatized using heptafluorobutyric acid anhydride (HFBA) at 70 degrees C for 30 min, and the derivatives were analyzed by electron ionization (EI) GC/MS in selected ion monitoring mode. Confirmation was accomplished by comparing retention times and the relative abundances of selected ions with those of standards. Deuterated analogs of the analytes were used as internal standards for quantification. Calibration curves for ten analytes were established in the concentration range 0.1-10 ng/mg with high correlation coefficients (r2 > 0.999). The intra-day and inter-day precisions were within 12.1% and 15.8%, respectively. The intra-day and inter-day accuracies were between -8.7% and 10.7%, and between -5.9% and 13.8%, respectively. The limit of detection (LOD) and limit of quantification (LOQ) obtained were 0.03 and 0.05 ng/mg for AP, MA, MDA, MDMA and MDEA; 0.05 and 0.08 ng/mg for K, NK, MOR and COD; and 0.08 and 0.1 ng/mg for 6-AM. The recoveries were above 88.6% for all the compounds, except K and NK which were in the range of 71.7-72.7%. Eight hair samples from known polydrug abusers were examined by this method. These results show that the method is suitable for broad-spectrum drug testing in a single hair specimen.  相似文献   

9.
A fast and reliable method using solid-phase extraction and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) has been developed for the simultaneous detection, identification and quantification of several central nervous system depressor drugs of abuse such as cannabinoids (Delta9-tetrahydrocannabinol, THC) and opiates (morphine, codeine, heroin, methadone, fentanyl) and their metabolites in water samples. Compounds were extracted from water by using Oasis HLB cartridges. After SPE enrichment, the selected depressor drugs, under UPLC optimized conditions, were separated in less than 8 min. Electrospray (ESI) tandem MS in positive ion mode and selected reaction monitoring was used for quantification. ESI-MS/MS conditions such as capillary and cone voltages, source and desolvation temperatures and cone and desolvation gas flow rates have been optimized and MS and MS/MS spectra of the studied compounds were obtained. At the working conditions four identification points were obtained as required by European Union guidelines for analysis by LC-MS/MS. Quality parameters (intra-day and inter-day precisions) for each analyte have been established in three different matrixes (purified, surface and waste waters). Recoveries were generally higher than 70% and instrumental quantification limits and limits of quantification were in the low pg and ng/l range, respectively. Finally, the method has been applied to the analysis of influent and effluents wastewaters and natural water samples from Catalonia (NE Spain) where the presence of several opiates such as morphine, codeine, norcodeine 2-ethylene-1,5-dimethyl-3,3-diphenylpyrrolidine and methadone and cannnabinoids such as THC and 11-nor-carboxy-Delta9-tetrahydrocannabinol has been demonstrated.  相似文献   

10.
This study reports the development and validation of a method using hydrophilic interaction liquid chromatography–tandem mass spectrometry (HILIC-MS/MS) for the analysis of cocaine and its metabolites benzoylecgonine (BE), ecgonine methyl ester (EME), and cocaethylene (CE) in hair samples. Decontamination was performed as follows: Firstly, the aliquot of hair was briefly rinsed with 2 mL dichloromethane, then was washed three times with 10 mL 0.01 M phosphate buffer, pH 6, for 15 min, followed by 2 mL 2-propanol for less than 2 min, and, finally, a last rinse with 2 mL dichloromethane was again done. Cocaine compounds were extracted from 10 mg of hair by incubation with 2 mL 0.1 M HCl at 50 °C for 12 h and purified by solid phase extraction with Oasis MCX cartridges. Analysis was performed by LC-MS/MS using an Atlantis HILIC silica chromatographic column. The method was fully validated. Linearity was established over the concentration range 0.020–10.0 ng/mg for cocaine (COC), 0.010–10.0 ng/mg for BE and CE, and 0.005–2.0 ng/mg for EME, and the correlation coefficients were all >0.99. Extraction efficiency was >70% for all analytes. Limits of detection were 0.0005 ng/mg for CE and 0.001 ng/mg for the other analytes (COC, BE, and EME). Lower limits of quantification were the lowest points of the calibration curves with acceptable accuracy and precision (coefficient of variation ≤20%). Intra- and inter-day imprecision ranged between 1.5% and 9.5% and 0.7% and 12.6%, respectively. Intra- and inter-day inaccuracy ranged from 0.5% to 12.3% and from 0.7% to 7.1%, respectively. With regard to matrix effects, suppression was <27.5% in all cases. The method was applied to the analysis of several samples derived from forensic cases.  相似文献   

11.
Presence of matrix ions could negatively affect the sensitivity and selectivity of liquid chromatography‐tandem mass spectrometer (LC‐MS/MS). In this study, the efficiency of a miniaturized silica monolithic cartridge in reducing matrix ions was demonstrated in the simultaneous extraction of morphine and codeine from urine samples for quantification with LC‐MS. The miniaturized silica monolith with hydroxyl groups present on the largely exposed surface area function as a weak cation exchanger for solid phase extraction (SPE). The miniaturized silica cartridge in 1 cm diameter and 0.5 cm length was housed in a 2‐ml syringe fixed over a SPE vacuum manifold for extraction. The cleaning effectiveness of the cartridge was confirmed by osmometer, atomic absorption spectrometer, LC‐MS and GC‐TOFMS. The drugs were efficiently extracted from urine samples with recoveries ranging from 86% to 114%. The extracted analytes, after concentration and reconstitution, were quantified using LC‐MS/MS. The limits of detection for morphine and codeine were 2 ng/ml and 1 ng/mL, respectively. The relative standard deviations of measurements ranged from 3% to 12%. The monolithic sorbent offered good linearity with correlation coefficients > 0.99, over a concentration range of 50–500 ng/ml. The silica monolithic cartridge was found to be more robust than the particle‐based packed sorbent and also the commercial cartridge with regards to its recyclability and repeated usage with minimal loss in efficiency. Our study demonstrated the efficiency of the miniaturized silica monolith for removal of matrix ions and extraction of drugs of abuse in urinary screening. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
An anti-ketamine molecularly imprinted polymer (MIP) was synthesized and used as the sorbent in a solid-phase extraction protocol to isolate ketamine and norketamine from human hair extracts prior to LC-MS/MS analysis. Under optimised conditions, the MIP was capable of selectively rebinding ketamine, a licensed anaesthetic that is widely misused as a recreational drug, with an apparent binding capacity of 0.13 μg ketamine per mg polymer. The limit of detection (LOD) and lower limit of quantification (LLOQ) for both ketamine and norketamine were 0.1 ng/mg hair and 0.2 ng/mg hair, respectively, when 10 mg hair were analysed. The method was linear from 0.1 to 10 ng/mg hair, with correlation coefficients (R 2) of better than 0.99 for both ketamine and norketamine. Recoveries from hair samples spiked with ketamine and norketamine at a concentration of 50 ng/mg were 86% and 88%, respectively. The method showed good intra- and interday precisions (<5%) for both analytes. Minimal matrix effects were observed during the LC-MS/MS analysis of ketamine (ion suppression −6.8%) and norketamine (ion enhancement +0.2%). Results for forensic case samples demonstrated that the method successfully detected ketamine and norketamine concentrations in hair samples with analyte concentrations ranging from 0.2 to 5.7 ng/mg and from 0.1 to 1.2 ng/mg, respectively.  相似文献   

13.
A fast, simple and inexpensive sample preparation method based on the matrix solid-phase extraction (SPE) technique is proposed for the isolation of cypermethrin and its metabolite residues from soils. Both the extraction and clean-up procedures were carried out in two steps and target compounds were determined by gas chromatography coupled with electron-impact mass spectrometry (GC-EI/MS). The characteristic ions and fragmentation mechanism of cypermethrin were evaluated by electron impact ionization mass spectrometry (EI/MS). After the optimization of different parameters, such as the extraction solvent, the pesticide was extracted from the matrix with methanol/acetone in a Soxhlet extractor, cleaned up on a Florisil column by elution with a mixture of 30% ethyl acetate in n-hexane and analyzed by gas chromatography-electron impact ionization mass spectrometry (GC-EI/MS) in the selected ion-monitoring mode (SIM) with permethrin as internal standard. Recovery was in the range 77–118% with relative standard deviations (RSD) between 2.5% and 10.2%. The limit of detection (LOD) was 6.5?µg/kg for cypermethrin. The developed method was linear in the injection range 6–30?ng, with correlation coefficients greater than 0.9957.  相似文献   

14.
Miyaguchi H  Inoue H 《The Analyst》2011,136(17):3503-3511
An LTQ Orbitrap XL hybrid mass spectrometry method was developed for the determination of illicit drugs and their metabolites, including amphetamine (AP), methamphetamine (MA), dimethylamphetamine (DMA), 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA), ketamine (KET), norketamine (NK), cocaine (COC) and benzoylecgonine (BE), in hair. Micropulverized extraction was employed for sample preparation using a small hair sample (2 cm piece or 0.2 mg). Recoveries of the analytes during sample preparation were estimated using fortified hair samples and ranged from 35.5% for COC to 71.7% for AP. High resolution full-scan mass spectra and unit resolution product-ion spectra were obtained with the Orbitrap analyzer and the linear ion-trap analyzer, respectively. High-resolution extracted ion chromatograms at a tolerance of 3 ppm were utilized for quantification. The analytes were identified using the product-ion spectra in combination with the accurate masses of the corresponding protonated molecules observed in the high-resolution mass spectra. Lower limits of quantification obtained from a 0.2 mg hair sample were 0.050 ng mg(-1) (MDMA, KET and BE), 0.10 ng mg(-1) (AP, MA, DMA, NK and COC) and 0.50 ng mg(-1) (MDA). Two reference materials were analyzed for verification, and segmental analysis of single strands of hair specimens from actual cases was performed.  相似文献   

15.
Ecgonine is suggested to be a promising marker of cocaine (COC) ingestion. A combined mass spectrometry (MS) and tandem MS (MS/MS) method was developed to simultaneously determine ecgonine and seven other metabolites of cocaine in human urine and whole blood with ultra-high-pressure liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. The compounds were extracted from as little as 100 μL of sample by solid-phase extraction with a 96-well μElution solid-phase extraction plate. The protonated molecules or fragment ions at accurate mass acquired in MS mode were used to quantify specific analytes, following by dedicated MS/MS identification. The assay was linear in the range from 5 to 50-100 ng/mL for urine samples, except for ecgonine methyl ester (10-200 ng/mL) and ecgonine (40-400 ng/mL), and was linear from 1-2 to 50 ng/mL for whole blood samples, except for ecgonine methyl ester (20-1,000 ng/mL) and ecgonine (40-2,000 ng/mL). The correlation coefficients were all greater than 0.99. The limits of detection ranged from 0.2 to 16 ng/mL, and the lower limits of quantification ranged from 1 to 40 ng/mL. The repeatability and intermediate precision were 18.1 % or less. The accuracy was in the range from 80.0 to 122.9 %, process efficiencies were in the range from 8.6 to 177.4 %, matrix effects were in the range from 28.7 to 171.0 %, and extraction recoveries were in the range from 41.0 to 114.3 %, except for ecgonine (12.8 % and 9.3 % at low and high concentrations, respectively). This method was highly sensitive in comparison with previously published methods. The validated method was successfully applied to the analysis of real samples derived from forensic cases, and the results verified that, on the basis of data from four positive samples, ecgonine is a promising marker of cocaine ingestion.
Figure
Procedure for the determination of ecgonine and seven other cocaine metabolites in human urine and whole blood using a combined mass spectrometry and tandem MS method aIer the solid‐phase extraction of the anaytes  相似文献   

16.
Owing to the tight control of methamphetamine, it is presumed that phentermine, an amphetamine-type anorectic, has recently been considered a supplement for methamphetamine abusers in Korea. In addition, the abuse of other anorectics obtained by inappropriate means has become a social issue. Hair is a useful specimen to prove chronic drug use. Therefore, an analytical method for the simultaneous detection of phentermine, phendimetrazine, amfepramone, fenfluramine, mazindol, methamphetamine, and 3,4-methylenedioxymethamphetamine (MDMA), as well as their metabolites, which covers the major amphetamines and anorectic agents in Korea, in hair was established and validated using liquid chromatography–tandem mass spectrometry (LC-MS/MS). The drugs and their metabolites in hair were extracted using 1 % HCl in methanol and then filtered and analyzed by LC-MS/MS with electrospray ionization in positive mode. The validation results for selectivity, linearity, matrix effect, recovery, process efficiency, intra- and interassay precision and accuracy, and processed sample stability were satisfactory. The limits of detection ranged from 0.025 to 1 ng/10 mg hair and the limits of quantification were 0.25 ng/10 mg hair for every analyte except mazindol and phentermine, for which they were 10 ng/10 mg hair. The method was successfully applied for the segmental determination of selected anorectics, methamphetamine, MDMA, and their metabolites in hair from 39 drug suspects. Among the anorectics, phentermine and/or phendimetrazine were identified with or without methamphetamine in the hair samples. Closer supervision of the inappropriate use of anorectics is necessary. Also, hair analysis is useful for monitoring the abuse potential of unnoticed drugs.  相似文献   

17.
《Analytical letters》2012,45(11):2307-2316
Abstract

This paper describes a gas chromatography‐mass spectrometry method for the simultaneous detection of opiates, cocaine, and benzoylecgonine from human hair samples. Conditioning samples were extracted with Waters Oasis HLB (hydrophilic‐lipophilic balance) cartridges. The detector response was linear for the drugs studied over the range 0.5–20 ng/mg. The limits of quantitation and detection were found to be acceptable. Intra‐ and interbatch coefficients of variation oscillated between 0.2 and 17.9%, and mean relative errors were in the range of 0.04–18.2%. The recoveries were higher than 66.7% in all cases. Finally, the method was applied to 20 hair samples from drug users, obtaining positive results in all cases.  相似文献   

18.
A liquid chromatography-tandem mass spectrometry method was developed for the determination of ketamine (with its metabolite norketamine) and some amphetamines (amphetamine, methamphetamine, methylenedioxyamphetamine, and 3,4-methylenedioxymethamphetamine). This method was developed to determine these compounds in hair and is able to simultaneously quantify all of them in human hair. Hair samples (20 mg) were washed and pulverized, and an extraction with formic acid (0.01%) and ultrasonication for 4 h was used. Deuterated analogs of the analytes were used as internal standards for quantification. Linearity from 0.5 to 25 ng/mg was obtained for both ketamine (and norketamine) and amphetamines with correlation coefficients exceeding 0.99. The limit of detection and the limit of quantification obtained were 0.1 and 0.5 ng/mg, respectively, for ketamine and amphetamines. A total of 25 hair samples from known drug abusers (relating to designer drug consumption or consumption of amphetamines) were examined by this validated method. The results show that the proposed method is suitable for testing these drugs in a single sample of hair. In addition, it is simpler and faster than analysis by conventional methods such as gas chromatography-mass spectrometry, which usually require a more laborious extraction procedure and, in most of cases, an additional derivatization process.  相似文献   

19.
A simple procedure combining headspace solid-phase microextraction (HS-SPME) and gas chromatography–mass spectrometry (GC/MS) to detect and quantify amphetamines, ketamine, methadone, cocaine, cocaethylene and ∆9-tetrahydrocannabinol (THC) in hair is described. This procedure allows, in a single sample, even scant, analysis of drugs requiring different analytical conditions. A hair sample (10 mg) is washed and subjected to acidic hydrolysis. Then the HS-SPME is carried out (10 min at 90 °C) for amphetamines, ketamine, methadone, cocaine and cocaethylene. For derivatization of analytes, the fibre is introduced into the headspace of another closed vial containing acetic anhydride. After a chromatographic run, an alkaline hydrolysis for THC analysis is carried out in the same vial containing the hair sample previously used. For adsorption, the solid-phase microextraction needle is inserted into the headspace of the vial and the fibre is exposed for 30 min at 150 °C. For derivatization of analytes, the fibre is introduced into the headspace of another closed vial containing N-methyl-N-(trimethylsilyl)trifluoroacetamide. The GC/MS parameters were the same for both chromatographic runs. The linearity was proved to be between 0.01 and 10.00 ng/mg. The repeatability (intra- and interday precision) was below 10% as the coefficient of variation for all compounds. The accuracy, as the relative recovery, was 96.2–103.5% (spiked samples) and 88.6–101.7% (quality control sample). The limit of detection ranged from 0.01 to 0.12 ng/mg, and the limit of quantification ranged from 0.02 to 0.37 ng/mg. Application of the procedure to real hair samples is described. To the best of our knowledge, the proposed procedure combining HS-SPME and GC/MS is the first one be to successfully applied to the simultaneous determination of most of the common recreational drugs, including THC, in a single hair sample.  相似文献   

20.
建立超高效液相色谱-串联质谱(UPLC-MS/MS)同时测定化妆品中50种非法添加化学药物定性筛查及定量分析方法.不同基质样品经乙腈溶液(含0.5%甲酸)提取后,冷冻离心,上清液采用2 mg/L乙二胺四乙酸二钠水溶液定容,以甲醇-0.1%甲酸溶液为流动相,经CAPCELL CORE C18色谱柱梯度洗脱分离.采用电喷雾电离(ESI),以多重反应监测(MRM)模式进行正负离子检测.所测50种化学药物在10~100 ng/mL范围内呈现良好的线性关系(r值均大于0.991 0),精密度、重复性良好,平均回收率在87.2%~109.7%之间,相对标准偏差(RSD)不超过10.0%,方法检出限为0.05~33 ng/g,定量限为0.15~99 ng/g.方法简便、灵敏度高、重复性好,可以实现化妆品中50种非法添加化学药物快速、准确的定性筛查和定量测定.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号