首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 743 毫秒
1.
We investigate the role of substrates on the collective excitations of graphene by using a first-principles implementation of the density response function within the random-phase approximation. Specifically, we consider graphene adsorbed on SiC(0001) and Al(111) as representative examples of a semiconducting and metallic substrate. On SiC(0001), the long wavelength π plasmons are significantly damped although their energies remain almost unaltered. On Al(111), the long wavelength π plasmons are completely quenched due to the coupling to the metal surface plasmon. The strong damping of the plasmon excitations occurs despite the fact that the single-particle band structure of graphene is completely unaffected by the substrates illustrating the nonlocal nature of the effect.  相似文献   

2.
The influence of the nanowire shape on the excitation of surface plasmon polaritons at metallic nanowire arrays is studied numerically. For a system of silver nanowires housed on a polymer substrate, nanowires with rectangular and elliptical cross sections are compared. It was found that in the case of rectangular nanowires the excitation efficiency is higher for surface plasmons at the polymer–metal interface than for surface plasmons at the air–metal interface. Conversely, in the case of elliptical nanowires the air–metal plasmon modes are stronger. Further, it is noted that the nanowire shape directly influences the position of the surface plasmon resonance.  相似文献   

3.
The unique optical properties of Tamm plasmons (TPs) – such as flexible wavevector matching conditions including inplane wavevector within the light line, and existing both S‐ and P‐polarized TPs − facilitate them for direct optical excitation. The Tamm plasmon‐coupled emission (TPCE) from a combined photonic–plasmonic structure sustaining both surface plasmons (SPs) and TPs is described in this paper. The sensitivity of TPCE to the emission wavelength and polarization is examined with back focal plane imaging and verified with the numerical calculations. The results reveal that the excited probe can couple with both TPs and SPs, resulting in surface plasmon‐coupled emission (SPCE) and TPCE, respectively. The TPCE angle is strongly dependent on the wavelength allowing for spectral resolution using different observation angles. These Tamm structures provide a new tool to control the optical emission from dye molecules and have many potential applications in fluorescence‐based sensing and imaging.  相似文献   

4.
Optical sensors based on surface plasmons have attracted much attention over the past decades owing to the wealth of applications in bio‐ and chemical and gas sensing. In surface plasmon resonance sensors, a single metal layer is commonly used, but its resolution is limited because of broad resonances. In this context, we have developed a sensor chip based on a stack of metals and a dielectric, e.g. a metal‐insulator‐metal structure, consisting of a thick insulator layer sandwiched by metal layers, that exhibits a sharp resonance due to the excitation of surface plasmon polaritons hybrid modes. We have performed both experiments and theoretical simulations to estimate the enhancement of the sensitivity of such a structure. By changing the refractive index of an aqueous solution of glucose on top of the sensor chip, we found that the use of a metal‐insulator‐metal structure improves the figure of merit of the sensor 7.5 times compared to that of a conventional surface plasmon resonance sensor chip.  相似文献   

5.
Frequency response of metal clad planar optical waveguides   总被引:2,自引:0,他引:2  
The propagation characteristics of metal clad planar optical waveguide as a function of wavelength are investigated theoretically for Al, Ag, and Au. The results obtained show that attenuation of the propagation modes in these guides is highly dependent on wavelength, which can be used to design an efficient integrated optical waveguide polarizer with high extinction ratios, or to select the wavelength for the surface plasmon based metal clad optical waveguide sensors. It is observed that Al is the only metal that still supports the surface plasmons in the UV region.  相似文献   

6.
Chiral responses are optical responses involving circular polarizations. Controlling the chiral response in a flexible way is very important in optical manipulations. Chiral metamaterials have thus drawn enormous interest due to their flexible designing feature. However, most of the previous studies are mainly realized by designing the structure of the individual meta‐atom. Meanwhile, to enhance the response, complex design and fabrication processes are typically required. Here, by introducing spin‐dependent propagating surface plasmons and spin‐selective interference, giant spin‐resolved transmission is achieved in a simple meta‐hole structure. In this interaction process, spin‐orbital angular momentum conversion plays an essential role. By controlling the phase difference between the interference components, controllable spin‐resolved transmission is achieved. Furthermore, such method can also be applied to realize spin‐resolved excitation of surface plasmons. The proposed controlling strategy offers a versatile platform for a variety of promising applications, such as polarization control, asymmetric transmission, surface plasmon excitation, and on‐chip chiral manipulation.  相似文献   

7.
Using Ohm’s law, a solution to plasmon hybridization via Kirchoff’s equations results in a simple and intuitive picture of a metal nanoparticle dimer as a capacitively coupled circuit. Calculated absorption spectra and surface charge densities show that dimers of different metallic composition support different super- and sub-radiant plasmons compared to homodimers. Strong screening of Coulomb interactions between nanoparticles of different metallic background prohibits the excitation of anti-bonding plasmons, while changes to the free electron conductivity upon a collective response result in coupled plasmon lifetimes which shift as a function of interparticle distance. Smaller separations then result in the longest lived plasmons.  相似文献   

8.
We show theoretically that coherent light can be completely absorbed and transferred to surface plasmons in a two- or three-dimensional metallic nanostructure by exciting it with the time-reversed mode of the corresponding surface plasmon laser ("spaser"). The narrow-band perfect absorption is a generalization and application of the concept of critical coupling to a nanocavity with surface plasmon resonances. Perfect coupling of light to nanostructures has potential applications to nanoscale probing as well as background-free spectroscopy and ultrasensitive detection or sensing.  相似文献   

9.
Inside of a hyperbolic medium, the principal components of the permittivity tensor have opposite signs causing the medium to exhibit a ‘metallicbr’ type of response to light wave sin one direction, and a ‘dielectric’ response in the other. Our study shows that inside hyperbolic media, volume plasmon polaritons (VPPs) propagate along the characteristic planes, forming distinct, directionally dependent optical responses. This is similar to the propagation of conventional surface plasmon polaritons (SPPs) along the planar interfaces separating the isotropic dielectrics and metallic slabs. Interestingly, the plasmon polariton propagates along the resonance cone in a volume of hyperbolic metamaterial crossing the interfaces of the constitutive materials. The Young's double‐slit scheme is used to study the spatially‐confined diffraction in a hyperbolic slab, made of many thin planar layers of a metal and dielectric, to obtain the sub‐wavelength interference pattern at the output interface. Proof‐of‐concept systems for producing such patterns applicable to nanolithography and subwavelength probes are demonstrated.  相似文献   

10.
The understanding of light‐matter interactions at the nanoscale lays the groundwork for many future technologies, applications and materials. The scope of this article is the investigation of coupled photonic‐plasmonic systems consisting of a combination of photonic microcavities and metallic nanostructures. In such systems, it is possible to observe an exceptionally strong coupling between electromagnetic light modes of a resonator and collective electron oscillations (plasmons) in the metal. Furthermore, the results have shown that coupled photonic‐plasmonic structures possess a considerably higher sensitivity to changes in their environment than conventional localized plasmon sensors due to a plasmon excitation phase shift that depends on the environment.  相似文献   

11.
We show that a metal-dielectric-metal structure can function as a negative refraction lens for surface plasmon waves on a metal surface. The structure is uniform with respect to a plane of incidence and operates at the optical frequency range. Using three-dimensional finite-difference time-domain simulations, we demonstrate the imaging operation of the structure with realistic material parameters including dispersions and losses. Our design should facilitate the demonstration of many novel effects associated with negative refraction on chip at optical wavelength ranges. In addition, this structure provides a new way of controlling the propagation of surface plasmons, which are important for nanoscale manipulation of optical waves.  相似文献   

12.
The technique of ultrahigh-resolution nonlinear fluorescent microscopy based on standing surface plasmons is proposed. On the wavelength of a surface plasmon of 20 nm the expected lateral resolution should be 1–2 nm. Slow surface plasmons with the required mean free path of ~1 m are possible in the planar amplifying medium-metal-dielectric structures due to the compensation of loss in the metal by the amplification in the active medium. In the optical and near infrared range the undamped surface plasmons with the wavelength of 20–50 nm in thin silver films can be obtained at the material gain of active medium of (1–2) × 104 cm ?1. Possibilities of obtaining this gain in the plasmon structures remain to be seen.  相似文献   

13.
We investigate the plasmonic structure of a metallic nanoparticle near a metallic thin film. We show that in the thin film limit, a virtual plasmon resonance composed of delocalized thin film plasmons is induced. We investigate how the physical properties of the virtual state depend on polarization, film thickness and nanoparticle-film separation. We show that the electromagnetic field enhancements associated with the virtual plasmon resonance are large, suggesting applications of metallic nanoparticle/thin film systems as substrates for surface enhanced spectroscopies and surface enhanced scanning probe microscopies. PACS 78.67.Bf; 73.20.Mf; 78.30.-j  相似文献   

14.
Surface plasmons at the metal–dielectric interface have emerged as an important candidate to propagate and localize light at subwavelength scales. By tailoring the geometry and arrangement of metallic nanoarchitectures, propagating and localized surface plasmons can be obtained. In this brief perspective, we discuss: (1) how surface plasmon polaritons (SPPs) and localized surface plasmons (LSPs) can be optically excited in metallic nanoarchitectures by employing a variety of optical microscopy methods; (2) how SPPs and LSPs in plasmonic nanowires can be utilized for subwavelength polarization optics and single-molecule surface-enhanced Raman scattering (SERS) on a photonic chip; and (3) how individual plasmonic nanowire can be optically manipulated using optical trapping methods.  相似文献   

15.
It is generally admitted that the extraordinary transmission of metallic grating with very narrow slits is mainly due to the excitation of surface plasmons on the upper and lower interfaces of the grating. We show that the surface plasmon contribution is not the prime effect and that waveguide mode resonance and diffraction are responsible for the extraordinary transmission. Additionally and surprisingly, we reveal that the transmittance of subwavelength metallic gratings is always nearly zero for frequencies corresponding to surface plasmon excitation. This finding implies that surface plasmons play a negative role in the transmission.  相似文献   

16.
Surface plasmon resonance (SPR) sensors have been a mature technology for more than two decades now, however, recent investigations show continuous enhancement of their sensitivity and their lower detection limit. Together with the recent investigations in localized SPR phenomena, extraordinary optical transmission through nanoapertures in metals, and surface‐enhanced spectroscopies, drastic developments are expected to revolutionize the field of optical biosensing. Sensitivity‐enhancement (SE) techniques are reviewed focusing both on the physical transduction mechanisms and the system performance. In the majority of cases the SE is associated with the enhancement of the electromagnetic field overlap integral describing the interaction energy within the analyte. Other important mechanisms are the interaction between plasmons and excitons and between the analyte molecules and the metal surface. The lower detection limit can be reduced significantly if systems with high signal‐to‐noise ratio are used such as common‐path interferometry, ellipsometry or polarimetry systems.  相似文献   

17.
Airy beams represent an important class of non‐diffracting waves which can be realized on a flat surface. Being generated in the form of surface‐plasmon polaritons, such Airy plasmons demonstrate many remarkable properties: they do not diffract while propagating along parabolic trajectories, and they recover their shape after passing through obstacles. This paper reviews the basic physics of Airy plasmons in both paraxial and non‐paraxial cases, and describes the experimental methods for generation of Airy surface waves on metal surfaces, including a control of their trajectories, as well as the interference of Airy plasmons and hot‐spot generation. Many unusual properties of Airy plasmons can be utilized for useful applications, including plasmonic circuitry and surface tweezers. Picture: Observation of two colliding Airy plasmons.  相似文献   

18.
This work is related to the development of an integrated Surface Plasmon Resonance (SPR) sensor on silicon platform. The optical properties of metallic nanogratings fabricated on the semiconductor structure allow direct plasmonic detection in transmission mode. Specially designed angular interrogation method provides a periodic signal with phase dependent on the conditions of surface plasmon excitation. Proposed technique leads to sensitivity better than 10?6 RIU for conventional SPR Kretschmann configuration and was tested on the integrated Si‐based nanoplasmonic chip. Developed concept is promising for low‐cost mono and multi ‐sensing applications by portable or stationary platforms.  相似文献   

19.
On the assumption that the resonant surface plasmons on a spherical nanoparticle are formed by standing waves of two counter-propagating surface plasmon waves along the surface, by using Mie theory simulation, we find that the dispersions of surface plasmon resonant modes supported by silver nanospheres match with those of the surface plasmons on a semiinfinite medium-silver interface very well. This suggests that the resonant surface plasmons of a metal nanosphere can be treated as a propagating surface plasmon wave.  相似文献   

20.
郑俊娟  孙刚 《物理学报》2005,54(11):5210-5217
研究了金属板的上下表面附近各放置一层按周期排列的电介质小球的体系的光学性质.用多重散射法计算的结果显示金属上侧的周期性排列的电介质小球可诱发金属-电介质表面上的表面等离子激元.这些表面等离子激元的存在可通过非常尖锐的吸收峰反映出来.对于无限厚的金属板,这些吸收峰的峰值位置主要与电介质小球的周期有关,且与解析理论符合得相当好.在有限厚度的金属板中,金属板的两侧表面会产生对称和反对称的两种表面等离子激元,从而使原来在无限厚的金属表面上所出现的单一频率的表面等离子激元劈裂为双频率.由于对称和反对称的表面等离子激元模式在金属板的两侧表面均有相当强的电磁场,因而它们可导致强的电磁波穿透.通过在金属板的下侧加入玻璃球层可将表面等离子激元的电磁场引导出金属,并产生透射波.用多重散射法计算的结果证实,在此体系中由表面等离子激元所引起的透射可达到相当的强度. 对该体系中的物理机理进行了详细分析,从而能够通过调节该体系中的一些参数来控制表面等离子激元出现的频率,使强吸收峰或强透射峰出现在所希望的频率上. 关键词: 表面等离子激元 吸收谱 透射  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号