首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cocoa pulp occurs as a by-product of cocoa bean production and can be repurposed to different food applications, such as jams, fruit preparations and beverages, improving the sustainability of cocoa production, as well as the livelihoods of cocoa farmers. In this work, aroma-active compounds of fresh cocoa fruit pulps from different origins were investigated by applying aroma extract dilution analyses in combination with gas chromatography-mass spectrometry/olfactometry for identification. In total, 65 aroma-active compounds were determined in four different pulps originating from Indonesia, Vietnam, Cameroon, and Nicaragua. Vietnamese pulp showed the highest number of aroma-active regions, while Cameroonian pulp accounted for the lowest. Moreover, Cameroonian cocoa pulp showed the lowest FD factors. Overall, the odorants with the highest FD factors were trans-4,5-epoxy-(E)-decenal, 2- and 3-methylbutanoic acid, 3-(methylthio)propanal, 2-isobutyl-3-methoxypyrazine, (E,E)-2,4-nonadienal, (E,E)-2,4-decadienal, 4-vinyl-2-methoxyphenol, δ-decalactone, 3-hydroxy-4,5-dimethylfuran-2(5H)-one, dodecanoic acid, and linalool. This study provides insights into the aroma composition of fresh cocoa pulp from different origins for future food applications.  相似文献   

2.
The production of natural flavors by means of microorganisms is of great interest for the food and flavor industry, and by-products of the agro-industry are particularly suitable as substrates. In the present study, Citrus side streams were fermented using monokaryotic strains of the fungus Pleurotus sapidus. Some of the cultures exhibited a pleasant smell, reminiscent of woodruff and anise, as well as herbaceous notes. To evaluate the composition of the overall aroma, liquid/liquid extracts of submerged cultures of a selected monokaryon were prepared, and the volatiles were isolated via solvent-assisted flavor evaporation. Aroma extract dilution analyses revealed p-anisaldehyde (sweetish, anisic- and woodruff-like) with a flavor dilution factor of 218 as a character impact compound. The coconut-like, herbaceous, and sweetish smelling acyloin identified as (2S)-hydroxy-1-(4-methoxyphenyl)-1-propanone also contributed to the overall aroma and was described as an aroma-active substance with an odor threshold in air of 0.2 ng L−1 to 2.4 ng L−1 for the first time. Supplementation of the culture medium with isotopically substituted l-tyrosine elucidated this phenolic amino acid as precursor of p-anisaldehyde as well as of (2S)-hydroxy-1-(4-methoxyphenyl)-1-propanone. Chiral analysis via HPLC revealed an enantiomeric excess of 97% for the isolated product produced by P. sapidus.  相似文献   

3.
Yongchuan douchi is a traditional fermented soya bean product which is popular in Chinese dishes due to its unique flavor. In this study, the key aroma-active compounds of Yongchuan douchi were characterized by the combined gas chromatography–olfactometry (GC–O) and gas chromatography−mass spectrometry (GC–MS) with sensory evaluation. In total, 49 aroma compounds were sniffed and identified, and 20 of them with high flavor dilution factors (FD) and odor activity values (OAVs) greater than one were screened by applied aroma extract dilution analysis (AEDA) and quantitated analysis. Finally, aroma recombination and omission experiments were performed and 10 aroma-active compounds were thought to have contributed significantly including 2,3-butanedione (butter, cheese), dimethyl trisulfide (garlic-like), acetic acid (pungent sour), acetylpyrazine (popcorn-like), 3-methylvaleric acid (sweaty), 4-methylvaleric acid (sweaty), 2-mehoxyphenol (smoky), maltol (caramel), γ-nonanolactone (coconut-like), eugenol (woody) and phenylacetic acid (flora). In addition, sensory evaluation showed that the flavor profile of Yongchuan douchi mainly consisted of sauce-like, sour, nutty, smoky, caramel and fruity notes.  相似文献   

4.
Boiling, the most frequent edible way to hotpot seasoning (HS), exerts a significant impact on the aroma of HS. The present study employed, for the first time, a novel switchable system between GC-O-MS and GC×GC-O-MS (SGC/GC×GC-O-MS) to study the aroma compounds of HS and hotpot seasoning boiling liquid (HSBL). A total of 79 aroma compounds and 56 aroma-active compounds were identified. The aroma extract dilution analysis (AEDA) was used to analyze the differences between the key aroma-active components in the HS and HSBL. The results showed that 13 aroma-active components were significantly affected by boiling, such as D-limonene, methional, and linalool. Moreover, a total of 22 key aroma-active components were identified through the odor activity values (OAVs) calculation. Of them, (E)-2-octenal (fatty) and linalool showed a significant difference, suggesting them to be the most critical aroma-active compounds in the HSBL, and HS, respectively. Finally, the correlation between key aroma-active compounds and the sensory properties of HS and HSBL was studied. These results demonstrated that the OAVs of key aroma-active compounds could characterize the real information of samples through bidirectional orthogonal partial least squares (O2PLS). The analysis results were consistent with the sensory evaluation results.  相似文献   

5.
To explore the role of fatty acids as flavor precursors in the flavor of oxidized tallow, the volatile flavor compounds and free fatty acid (FFAs) in the four oxidization stages of tallow were analyzed via gas chromatography (GC)–mass spectrometry (MS), the aroma characteristics of them were analyzed by GC–olfactory (GC-O) method combined with sensory analysis and partial least-squares regression (PLSR) analysis. 12 common FFAs and 35 key aroma-active compounds were obtained. Combined with the results of odor activity value (OAV) and FD factor, benzaldehyde was found to be an important component in unoxidized tallow. (E,E)-2,4-Heptadienal, (E,E)-2,4-decadienal, (E)-2-nonenal, octanal, hexanoic acid, hexanal and (E)-2-heptenal were the key compounds involved in the tallow flavor oxidation. The changes in FFAs and volatile flavor compounds during oxidation and the metabolic evolution of key aroma-active compounds are systematically summarized in this study. The paper also provides considerable guidance in oxidation control and meat flavor product development.  相似文献   

6.
7.
The aroma compounds of ayran were isolated using solvent-assisted flavor evaporation (SAFE) resulting in a more representative extract of ayran odor compared to liquid–liquid extraction (LLE), solid-phase extraction (SPE), and simultaneous distillation–extraction (SDE). The aromatic extract was subjected to sensory analysis and identified and quantified by gas chromatography–mass spectrometry (GC–MS). A total of 19 volatile compounds were detected that included alcohols, aldehyde, acids, esters, ketones, and terpenes. However, the compounds present at the highest concentrations were ethyl lactate, ethanol, 2,3-butanediol, acetoin, and acetic acid. The key odorants for the ayran drinks were detected using aroma extract dilution analysis (AEDA) and GC–MS–olfactometry (GC–MS–O). A total of 14 aroma-active compounds were determined for the first time. The flavor dilution (FD) factors ranged between 4 and 512 while their odor activity values (OAVs) were from 1.35 to 1126.99. Ethyl lactate (FD of 512 whey/creamy), 2-methylbutanal (FD of 512, fruity), acetoin (FD of 256, buttery creamy), and butanoic acid (FD of 256, cheesy-sweet) were the strongest aroma-active components of the Ayran drink.  相似文献   

8.
9.
10.
To characterize key odorants in scallion pancake (SP), volatiles were extracted by solvent extraction-solvent assisted flavor evaporation. A total of 51 odor-active compounds were identified by gas chromatography-olfactometry (GC-O) and chromatography–mass spectrometry (GC-MS). (Z/E)-3,6-Diethyl-1,2,4,5-tetrathiane was detected for the first time in scallion food. Application of aroma extract dilution analysis to extracts showed maltol, methyl propyl disulfide, dipropyl disulfide and 2-pentylfuran had the highest flavor dilution (FD) factor of 4096. Twenty-three odorants with FD factors ≥ 8 were quantitated, and their odor active values (OAVs) were calculated. Ten compounds with OAVs ≥ 1 were determined as the key odorants; a recombinate model prepared from the key odorants, including (E,E)-2,4-decadienal, dimethyl trisulfide, methyl propyl disulfide, hexanal, dipropyl trisulfide, maltol, acetoin, 2-methylnaphthalene, 2-pentylfuran and 2(5H)-furanone, successfully simulated the overall aroma profile of SP. The changes in odorants during storage were investigated further. With increasing concentrations and OAVs during storage, hexanal became an off-flavor compound.  相似文献   

11.
Submerged fermentation of green tea with the basidiomycete Mycetinis scorodonius resulted in a pleasant chocolate-like and malty aroma, which could be a promising chocolate flavor alternative to current synthetic aroma mixtures in demand of consumer preferences towards healthy natural and ‘clean label’ ingredients. To understand the sensorial molecular base on the chocolate-like aroma formation, key aroma compounds of the fermented green tea were elucidated using a direct immersion stir bar sorptive extraction combined with gas chromatography–mass spectrometry–olfactometry (DI-SBSE-GC-MS-O) followed by semi-quantification with internal standard. Fifteen key aroma compounds were determined, the most important of which were dihydroactinidiolide (odor activity value OAV 345), isovaleraldehyde (OAV 79), and coumarin (OAV 24), which were also confirmed by a recombination study. Furthermore, effects of the fermentation parameters (medium volume, light protection, agitation rate, pH, temperature, and aeration) on the aroma profile were investigated in a lab-scale bioreactor at batch fermentation. Variation of the fermentation parameters resulted in similar sensory perception of the broth, where up-scaling in volume evoked longer growth cycles and aeration significantly boosted the concentrations yet added a green note to the overall flavor impression. All findings prove the robustness of the established fermentation process with M. scorodonius for natural chocolate-like flavor production.  相似文献   

12.
Some of the diverse agro-industrial waste generated in primary or secondary stages have proved to be promising biomaterials for treating aqueous effluents contaminated, in this case, with heavy metals. Therefore, it is necessary to know their optimal operating conditions and the regeneration or reusability of the solid by-product, an aspect related to desorption. Considering the above, this article presents the findings of a preliminary study related to the desorption process of coffee pulp without physicochemical modification (Castilla variety), an agricultural waste used as a sorbent of Cr(III and VI) ions in synthetic wastewater. The desorption efficiency of four eluting agents at defined concentrations (0.10M)—HC1, HNO3, H2SO4, and EDTA—was evaluated in a time interval of 1 to 9 days. Likewise, the proposals for the sorption and/or desorption mechanisms proposed and reported in the literature with respect to the use of biosorbents derived from the coffee crop are presented. With respect to the results, the coffee pulp used in previous studies of the adsorption of chromium species mentioned (optimal conditions in synthetic water of particle size 180 μm, dose 20 g·L−1, agitation 100 RPM, room temperature, time of 90 to 105 min) showed efficiencies in the removal of Cr(III) and Cr(VI) of 93.26% and 74.80%, respectively. Regarding the extracting substances used, H2SO4 0.10 M was the one that presented the highest desorption percentage in both chromic species, with a desorption of 45.75% Cr(VI) and 66.84% Cr(III) in periods of 5 and 9 days, respectively, with agitation of 100 RPM and room temperature. Finally, the dissemination of preliminary results on the desorption of coffee pulp contaminated with chromic species without physicochemical modification is novel in this study, as similar work with this specific material has not yet been reported in the literature. On the other hand, the limitations of the study and future research are related to the evaluation at different concentrations and of other extractor solutions that allow improving the efficiency of desorption of these chemical species in a shorter time from the coffee pulp (with and without modification) as well as the reuse cycles. As a result, the desorption of coffee pulp used as an adsorbent material in real water could help researchers identify the possible interfering factors that affect the process (foreign anions and cations, organic matter, environmental conditions, among others).  相似文献   

13.
In order to rapidly and precisely identify the volatile compounds in Chinese chive (Allium tuberosum Rottler), seven key parameters of headspace solid-phase micro-extraction conditions (HS-SPME) from Chinese chive were optimized. A total of 59 volatile compounds were identified by using the optimized method, including 28 ethers, 15 aldehydes, 6 alcohols, 5 ketones, 2 hydrocarbons, 1 ester, and 2 phenols. Ethers are the most abundant, especially dimethyl trisulfide (10,623.30 μg/kg). By calculating the odor activity values (OAVs), 11 volatile compounds were identified as the major aroma-active compounds of Chinese chive. From the analysis of the composition of Chinese chive aroma, the “garlic and onion” odor (OAV = 2361.09) showed an absolute predominance over the other 5 categories of aroma. The results of this study elucidated the main sources of Chinese chive aroma from a chemical point of view and provided the theoretical basis for improving the flavor quality of Chinese chive.  相似文献   

14.
In order to screen out Saccharomyces cerevisiae suitable for table grape fermentation, and compare it with commercial Saccharomyces cerevisiae in terms of fermentation performance and aroma producing substances, differences of fermentation flavor caused by different strains were discussed. In this experiment, yeast was isolated and purified from vineyard soil, 26s rDNA identification and fermentation substrate tolerance analysis were carried out, and the causes of flavor differences of wine were analyzed from three aspects: GC-MS, PCA and sensory evaluation. The results showed that strain S1 had the highest floral aroma fraction, corresponding to its high production of ethyl octanoate and other substances, and it had the characteristics of high sugar tolerance. The fruit sensory score of S3 wine was the highest among the six wines. Through exploration and analysis, it was found that compared with commercial Saccharomyces cerevisiae, the screened strains had more advantages in fermenting table grapes. The flavor of each wine was directly related to the growth characteristics and tolerance of its strains.  相似文献   

15.
To identify and analyze the characteristics of the microorganisms involved in the formation of the desirable flavor of Doenjang, a total of 179 strains were isolated from ninety-four Doenjang collected from six regions in South Korea, and fourteen strains were selected through a sensory evaluation of the aroma of each culture. The enzyme activities of amylase, protease and lipase was shown in the various strains. Bacillus sp.-K3, Bacillus sp.-K4 and Bacillus amyloliquefaciens-J2 showed relatively high protease activity, at 317.1 U, 317.3 U and 319.5 U, respectively. The Bacillus sp.-K1 showed the highest lipase activity at 2453.6 U. In the case of amylase, Bacillus subtilis-H6 showed the highest activity at 4105.5 U. The results of the PCA showed that Bacillus subtilis-H2, Bacillus subtilis-H3, and Bacillus sp.-K2 were closely related to the production of 3-hydroxy-2-butanone (23.51%~43.37%), and that Bacillus subtilis-H5 and Bacillus amyloliquefaciens-J2 were significantly associated with the production of phenethyl alcohol (0.39% and 0.37%). The production of peptides was observed to vary among the Bacillus cultures such as Val-Val-Pro-Pro-Phe-Leu and Pro-Ala-Glu-Val-Leu-Asp-Ile. These peptides are precursors of related volatile flavor compounds created in Doenjang via the enzymatic or non-enzymatic route; it is expected that these strains could be used to enhance the flavor of Doenjang.  相似文献   

16.
Summary: Coffee pulp is the main solid residue from the wet processing of coffee berries. Recent stringent measures by Pollution Control authorities, made it mandatory to treat all the solid and liquid waste emanating from the coffee farms. A study was conducted to evaluate the efficiency of an exotic (Eudrilus eugeniae) and a native earthworm (Perionyx ceylanesis) from coffee farm for decomposition of coffee pulp into valuable vermicompost. Exotic earthworms were found to degrade the coffee pulp faster (112 days) as compared to the native worms (165 days) and the vermicomposting efficiency (77.9%) and vermicompost yield (389 kg) were found to significantly higher with native worms. The multiplication rate of earthworms (280%) and worm yield (3.78 kg) recorded significantly higher with the exotic earthworms. The percentage of nitrogen, phosphorous, potassium, calcium and magnesium in vermicompost was found to increase while C:N ratio, pH and total organic carbon declined as a function of the vermicomposting. Vermicompost and vermicasts from native earthworms recorded significantly higher functional microbial group's population as compared to the exotic worms. The study reveals that coffee pulp can be very well used as substrate for vermicomposting using exotic (Eudrilus eugeniae) and native earthworm (Perionyx ceylanesis).  相似文献   

17.
18.
Coffee brew flavor is known to degrade during storage. Untargeted and targeted LC/MS flavoromics analysis was applied to identify chemical compounds generated during storage that impacted the flavor stability of ready-to-drink (RTD) coffee. MS chemical profiles for sixteen RTD coffee samples stored for 0, 1, 2, and 4 months at 30 °C were modeled against the sensory degree of difference (DOD) scores by orthogonal partial least squares (OPLS) with good fit and predictive ability. Five highly predictive untargeted chemical features positively correlated to DOD were subsequently identified as 3-caffeoylquinic acid, 4-caffeoylquinic acid, 5-caffeoylquinic acid, 3-O-feruloylquinic acid, and 5-O-feruloylquinic acid. The increase in the six acidic compounds during storage was confirmed by sensory recombination tests to significantly impact the flavor stability of RTD coffee during storage. A decrease in pH, rather than an increase in total acidity, was supported to impact the coffee flavor profile.  相似文献   

19.
This research was conducted to identify the aroma and aroma-active compounds of Berberis crataegina for the first time. Volatile profile of B. crataegina was obtained using the purge and trap extraction method with dichloromethane. Gas chromatography was coupled to mass spectrometry (GC–MS) allowed the quantitative and qualitative detection of 22 compounds in the sample. Aldehydes were the main chemical group in the sample and followed by aromatic alcohols and lactone. Aroma extract dilution analysis was implemented for the specification of key odourants of B. crataegina. In total, eight key odourants were detected in the extract of the sample, using GC–MS–Olfactometry and aldehydes were the leading chemical group. The key odourants, found to be contributing to the overall aroma in B. crataegina, were nonanal (FD = 1024; green, flowery), hexanal (FD = 512; green) and linalool (FD = 256; flowery, rose) because of high FD factors.  相似文献   

20.
The instability of rebaudioside A (Reb A) in food product applications during storage challenges their utilization. The pathways of Reb A degradation in aged acidic beverages were investigated. Three Reb A degradation compounds of known sensory importance were monitored, consisting of (1) a rearrangement, (2) a hydration, and (3) an epoxidation/rearrangement product. Using deuterium-labeled water (D2O) experiments, compounds 1–2 were reported to be generated by acid-catalyzed mechanisms involving the formation of a carbocation on carbon position 16, followed by either deprotonation via E1 elimination on C15 to form the more thermodynamically stable trisubstituted alkene (compound 1), or by the Markovnikov addition of water via SN1 substitution to form a tertiary alcohol (compound 2). Compound 3 was generated by epoxidation of the exomethylene at the C16–17 positions, followed by the opening and rearrangement of the ring to form a new alkene bond between C15–C16 and a primary alcohol on C17. Further analysis of the effect of beverage ingredients indicated the addition of caramel color significantly increased (p < 0.0001) the concentrations of compounds 1–2 compared to the aged control by 89 and 83%, respectively, whereas a specific coffee flavor and caramel color were reported to significantly reduce (p < 0.0001) the formation of compound 3 compared to the aged control during storage by 90 and 79%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号