首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
水处理中多相光催化反应器的研究进展   总被引:8,自引:0,他引:8  
 自从光催化技术应用于水处理以来,光催化反应器的研究就有了一些报道. 本文对影响光催化反应器效率的因素如光源种类、反应器结构、催化剂状态等进行了分析,总结了近年来国内外研制及应用的一些典型的光催化反应器,给出了其结构图. 指出了光催化氧化法应用过程中需要解决的一些关键问题.  相似文献   

2.
Robust static output feedback control was applied to a continuous stirred tank reactor with parametric uncertainty and multiple steady states in which exothermic reaction takes place. The problem of robust controller design was converted to a solution of linear matrix inequalities and a computationally simple non-iterative algorithm is presented. The possibility of using robust static output feedback for stabilization of reactors with uncertainty and comparison of robust P and PI controllers with an optimal controller is demonstrated by simulation results.  相似文献   

3.
A membrane reactor consisting of two recirculating flow systems connected via a membrane module has been constructed and used to study the dehydrogenation of cyclohexane. When the reactor is operated differentially it is possible to obtain the same information that is generated when using more conventional steady flow reactors. The batch system has the advantages of easily varying the ratio of membrane area to reactor volume and sampling a very wide range of effective Damköhler numbers. These are important variables in design studies. This ability has been demonstrated for the dehydrogenation of cyclohexane. The batch system reproduced results from studies using a more conventional flow reactor. In addition, with the batch reactor it was possible to experimentally confirm predictions that were based upon computer simulation but which were outside the range of experimental study for the conventional reactors used.  相似文献   

4.
A shrinking-bed reactor was designed by the National Renewable Energy Laboratory to maintain a constant bulk packing density of cellulosic biomass. The high solid-to-liquid ratio in the pretreatment process allows a high sugar yield and avoids the need to flush large volumes of solution through the reactor. The shrinking-bed reactor is a promising pretreatment reactor with the potential for scale-up for commercial applications. To scale up the shrinking-bed reactor, it is necessary to understand the flow pattern in the reactor. In this study, flow field is simulated with computational fluid dynamics using a porous medium model. Different discrete “snapshots” and multiple steady states are utilized. The bulk flow pattern, velocity distribution, and pressure drop are determined from the simulation and can be used to guide reactor design and scale-up.  相似文献   

5.
With the development of new photocatalytic methods over recent decades, the translation of these chemical reactions to industrial-production scales using continuous-flow reactors has become a topic of increasing interest. In this context, we describe our studies toward elucidating an empirically derived parameter for scaling photocatalytic reactions in flow. By evaluating the performance of a photocatalytic C−N cross-coupling reaction across multiple reactor sizes and geometries, it was demonstrated that expressing product yield as a function of the absorbed photon equivalents provides a predictive, empirical scaling parameter. Through the use of this scaling factor and characterization of the photonic flux within each reactor, the cross-coupling was scaled successfully from the milligram scale in batch to a multi-kilogram reaction in flow.  相似文献   

6.
A number of reactor designs for photocatalytic oxidation in the gas phase are considered: cylindrical reactors with photocatalysts supported by various techniques, a reactor with a vibrationally fluidized bed of a photocatalyst, and a coil reactor with the reactivation of a photocatalyst at regular intervals. It was found that the vibrational fluidization of catalyst grains enhanced catalyst activity because of the effect of periodic illumination of different grain sides. The results of testing of two types of domestic photocatalytic air purifiers commercially manufactured in Russia are reported.__________Translated from Kinetika i Kataliz, Vol. 46, No. 3, 2005, pp. 466–473.Original Russian Text Copyright © 2005 by Vorontsov, Kozlov, Smirniotis, Parmon.  相似文献   

7.
A new immobilized photocatalytic impinging jet stream reactor was designed, and the influences of the effective parameters like jet flow rate, TiO2 coating disc diameter, nozzle-to-disc distance, and initial concentration on phenol removal were investigated. The reactor was also used as a slurry reactor, and degradation efficiencies in both reactors were compared based on their catalyst loading. The results indicated that the slurry reactor has a higher degradation efficiency than the immobilized reactor at the same TiO2 loading and other operational conditions. The slurry reactor needs to separate and recover the TiO2 nanoparticles from the reaction medium which increases the overall process complexity and cost, while the immobilized reactor could be reused at least 4times without any significant decrease in removal efficiency. RTD result indicates that the tank in series model (N?=?5) could properly predict the reactors hydrodynamic behavior.  相似文献   

8.
With the development of new photocatalytic methods over recent decades, the translation of these chemical reactions to industrial‐production scales using continuous‐flow reactors has become a topic of increasing interest. In this context, we describe our studies toward elucidating an empirically derived parameter for scaling photocatalytic reactions in flow. By evaluating the performance of a photocatalytic C?N cross‐coupling reaction across multiple reactor sizes and geometries, it was demonstrated that expressing product yield as a function of the absorbed photon equivalents provides a predictive, empirical scaling parameter. Through the use of this scaling factor and characterization of the photonic flux within each reactor, the cross‐coupling was scaled successfully from the milligram scale in batch to a multi‐kilogram reaction in flow.  相似文献   

9.
The new design of the photocatalytic reactor is crucial to study for improving compatibility and scaling up the operation. A compatible loop photocatalytic reactor has been designed and used for rhodamine B decomposition. The photocatalysts were either ZnO or Fe-ZnO immobilized onto fiberglass cloth. The ZnO catalyst exhibited high crystallinity with or without Fe as the dopant. The crystallite size increased with the presence of Fe in the lattices. Most of the crystal parameters matched the standard ZnO data, and the cluster size was comparable to most reported studies. Diffuse Reflectance Spectroscopy (DRS) analysis confirmed the photon absorption shifted to the visible light range. The Fe dopant decreased the ZnO bandgap, and SEM-EDS confirmed the catalysts adhered to the fiberglass surface. The volume, thickness of the substrate solution, and reaction temperature influenced the photocatalytic-degradation rate. The photocatalytic degradation rate was higher under sunlight than ultraviolet irradiation. The reaction rate was lower in the batch reactor than in the loop reactor. The photocatalytic reaction almost completely mineralized RhB and changed the red solution to colorless. The immobilized photocatalyst has been reused more than 50 times without significantly decreasing the catalytic activity.  相似文献   

10.
Photocatalytic oxidation of organic compounds in gas phase appears to be a promising process for remediation of polluted air. In the present work, the photocatalytic degradation of acetone, which is a typical pollutant of indoor air, was investigated by using an annular photoreactor. After a modelling by a cascade of elementary continuously stirred tank reactor, the annular photoreactor was assimilated to a plug flow reactor (PFR). No transfer limitation (external and internal) has been demonstrated for this reactor with the fibreglass photocatalytic support. The influence of several kinetic parameters has been studied such as pollutant concentration, incident light irradiance, contact time and humidity content. The Langmuir–Hinshelwood model has been verified for acetone. It can be noticed that no by-products have been detected by FID suggesting almost total mineralization. The possible minor gaseous by-products have been accumulated into a mixture of ethanol–liquid nitrogen at −50 °C then a sample of it has been injected into a GC/MS for analysis. A mechanistic pathway is then proposed for the photocatalytic degradation of acetone.  相似文献   

11.
影响TiO2薄膜光催化降解亚甲基蓝的因素   总被引:3,自引:0,他引:3  
 用中频交流反应磁控溅射技术制备了具有良好光催化性能的TiO2薄膜,考察了紫外光源、反应器和溶液浓度对亚甲基蓝溶液光催化降解特性的影响. 结果表明,紫外光源对TiO2薄膜光催化降解性能有较大的影响; 在计算光催化降解速率时应充分考虑光解和光氧化的影响. 低压汞灯TUV为光催化降解的较好选择. 动态反应系统可以有效避免光解,显著提高光催化反应速度. TiO2薄膜具有很好的光催化性能,且性能稳定.  相似文献   

12.
在文Ⅰ~[1]的相平面分析的基础上, 利用线性稳定性分析和数值模拟的方法进一步分析了Schlögl模型在CSTR中的行为, 发现在适当条件下可以发生从定态向振荡态的不连续的突然跃迁现象。认为这种突然跃迁现象是通过鞍点-结点型复杂奇点的形成和消失而实现的。分析了这种鞍点-结点型跃迁与亚临界Hopf分支现象的差别, 并讨论了这种跃迁现象和实验上发现的某些突变型化学振荡现象之间的联系。  相似文献   

13.
The enhancement of ethylbenzene conversion by further displacement of the thermodynamic equilibrium via the influence of the dual-functionality of a well-mixed catalyst pattern has been investigated. A rigorous steady state mathematical model based on the dusty gas model is implemented for the simulation. The simulation results reveal that the introduction of the concept of the reaction coupling has significant effect on the displacement of the thermodynamic equilibrium and considerable enhancement of simultaneous production of styrene and cyclohexane. Almost 100% conversion of the ethylbenzene and benzene is achieved through the application of this approach. It is also found that considerable decrease in the reactor length is achieved by employing a reactor catalyst bed with different bed compositions. Effective operating regions with optimal conditions are observed. An effective reactor length criterion is used to evaluate the performance of the reactor under these optimal conditions. The effective reactor length is found to be sensitive and favored by high feed temperature and pressure. The sensitivity analysis shows that the key parameters of feed temperature, pressure, and the bed composition play an important role on the reactor performance. The results also show that almost 100% conversion of ethylbenzene and benzene at low temperature and shorter reactor length can be achieved by maintaining the reactor beds at different temperatures. This temperature switching policy may result in appreciable energy saving. Moreover, operating the reactor at low temperature protect the catalyst from the excessive temperatures which have destructive effects on the catalysts and the mechanical stability of the reactors. Also, the low temperature operation has significant contribution to the reduction of the operating cost.  相似文献   

14.
A methodology for hazard investigation based on the integration of a mathematical model approach into hazard and operability analysis is presented. This approach is based on mathematical modelling of a process unit where both steady-state analysis, including analysis of the steady states multiplicity and stability, and dynamic simulation are used. The dynamic simulation serves for the investigation of consequences of failures of the main controlled parameters, i.e. inlet temperature, feed temperature and feed composition. This simulation is also very useful for the determination of the influence of failure duration on the reactor behaviour. On the other hand, the steady state simulation can predict the reactor behaviour in a wide range of failure magnitude and determine the parametric zones, where shifting from one steady state to another one may occur. A fixed bed reactor for methyl tertiary-butyl ether synthesis was chosen to identify potential hazard and operational problems of a real process. Presented at the 34th International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, 21–25 May 2007.  相似文献   

15.
《中国化学快报》2023,34(4):107710
A millimeter scale butterfly-shaped reactor was proposed based on sizing-up strategy and fabricated via femtosecond laser engraving. An improvement of mixing performance and residence time distribution was realized by means of contraction and expansion of the reaction channel. The liquid holdup was greatly increased through connection of multiple mixing units. Structure optimization of the reactor was carried out by computational fluid dynamics simulation, from which the effect of reactor internals on mixing and the influence of parallel branching structure on heat transfer were discussed. The UV–vis absorption spectroscopy was used to determine the residence time distribution in the reactor, and characteristic parameters such as skewness and dimensionless variance were obtained. Further, a chained stagnant flow model was proposed to precisely describe the trailing phenomenon caused by fluid stagnation and laminar flow in small scale reactors, which enables a better fit for the experimental results of the asymmetric residence time distribution. In addition, the heat transfer performance of the reactor was investigated, and the overall heat transfer coefficient was 110–600 W m-2 K-1 in the flow rate range of 10–40 mL/min.  相似文献   

16.
The origin of the concept of a large-scale nuclear chain reaction occurring in nature can be traced back to the ideas expressed byAston in 1922 and byJoliot in 1935. Geochemical investigations on hot springs, which have been carried out at the University of Tokyo since the 1930s, played a key role in the early development of the theory of natural reactor. Results obtained from the studies, which have been carried out in various countries since the 1972 discovery of the Oklo phenomenon, reveal the fact that the natural reactors at Oklo may have indeed operated in a manner quite similar to the geysers or intermittent hot springs. A careful examination of the isotopic compositions of the so-called anomalous xenon from the Oklo reactor suggests that the natural reactors were operating at temperatures between the boiling point of iodine (183°C) and the melting point of tellurium (452°C), periodically being turned on and off.  相似文献   

17.
Laser-induced fluorescence (LIF) is an effective in-situ probe for NO concentrations below 300 ppm in a non-thermal plasma reactor. A new method has been developed to measure in-situ NO concentration in the reactor discharge region using a long-time—on the order of seconds—averaged fluorescence detection. This method, for quantifying NO concentration in a nonthermal plasma reactor, is simpler than a short-time—on the order of nanoseconds—fluorescence detection. For accurate measurement based on the new method, the LIF intensity must be close to the corona-induced fluorescence (CIF) intensity; the CIF intensity serves as a guide in selecting the LIF intensity. We find that a kinetic model proposed earlier works for two-tube reactors and represents the NO concentration in the middle of the reactor, which verifies the assumption of gas plug flow.  相似文献   

18.
Limited environmental pollutants have only been investigated for the feasibility of light‐emitting diodes (LED) uses in photocatalytic decomposition (PD). The present study investigated the applicability of LEDs for annular photocatalytic reactors by comparing PD efficiencies of dimethyl sulfide (DMS), which has not been investigated with any LED‐PD system, between photocatalytic systems utilizing conventional and various LED lamps with different wavelengths. A conventional 8 W UV/TiO2 system exhibited a higher DMS PD efficiency as compared with UV‐LED/TiO2 system. Similarly, a conventional 8 W visible‐lamp/N‐enhanced TiO2 (NET) system exhibited a higher PD efficiency as compared with six visible‐LED/NET systems. However, the ratios of PD efficiency to the electric power consumption were rather high for the photocatalytic systems using UV‐ or visible‐LED lamps, except for two LED lamps (yellow‐ and red‐LED lamps), compared to the photocatalytic systems using conventional lamps. For the photocatalytic systems using LEDs, lower flow rates and input concentrations and shorter hydraulic diameters exhibited higher DMS PD efficiencies. An Fourier‐transformation infrared analysis suggested no significant absorption of byproducts on the catalyst surface. Consequently, it was suggested that LEDs can still be energy‐efficiently utilized as alternative light sources for the PD of DMS, under the operational conditions used in this study.  相似文献   

19.
The demand of radioisotopes is rising due to wide-ranging applications in industry, agriculture, medicine and in research. Two sources of artificial radioisotopes are accelerators and reactors. The reactor offers large volume for irradiation, simultaneous irradiation of different samples and economy of production, whereas accelerators are generally used to produce those isotopes which can not be produced by reactor. Radioisotope production started on a significant scale in several countries with the commissioning of research reactors starting from the late 1950s. The period from 1950 to 1970 saw construction of a large number of research reactors with multiple facilities. After 1980, because of the decommissioning of many old ones, the number of operating reactors has been steadily decreasing. The research reactors used for radioisotope production could be broadly classified into swimming pool type and tank type reactors. CANDU power reactors currently produce many millions of curies per year of 60Co for MDS Nordion’s use in industry and commerce. Studies related to production of other isotopes in power reactors have also been performed. Indeed, while a very few reactors have come online in the past decade, many more have been retired or may retire in coming years. After failure of MAPLE project, there has been unwillingness to built new reactors. Activism and politics has made it so difficult to build new reactors that we are left to use only the reactors we inherited from a nuclear era. Many design considerations and requirements for the production of isotopes in power reactors must be assessed, such as; operator and public safety, minimum impact on station efficiency and reactor operations, shielding requirements during reactor operation with target adjusters and removal of the target adjusters from core, transportation within the station, and finally the processing and shipment off-site. Use of power reactors for isotope production is reviewed.  相似文献   

20.
A compartment model is used to describe the complex flow of a high-pressure ethylene copolymerization process in an industrial multi-feed multi-zone autoclave reactor at steady state operation conditions. To capture the imperfect mixing effects due to fresh initiator injection, each zone is considered as a set of three interconnected well mixed CSTRs with recycle streams. Volumes of the reactors and the recycle flow are adjusted to get the best fit with results of steady state well mixed analysis for each zone. Once the temperature and conversion as state variables in each reaction volume are known, the properties of polymer produced in each zone and those of final polymer can be determined. Using a realistic set of kinetic mechanisms, temperature, monomer conversion, molecular weights and short and long chain branching frequencies in each zone and at the exit point of the reactor are estimated. Some of the model results are compared with experimental data obtained for an industrial reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号