首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A template‐free method is described to fabricate continuous‐phase, porous polymer films by simultaneous phase separation during vapor deposition polymerization. The technique involves concurrent polymerization, crosslinking, and phase separation of condensed species and reaction products. Deposited films form open‐cell, macroporous structures consisting of crosslinked and glassy poly(glycidyl methacrylate). By limiting phase separation during vapor phase deposition, spatially dependent morphologies, such as layered morphologies, can be grown. Results show that combining vapor deposition polymerization with phase separation establishes morphological control, which may be applied to applications including cellular scaffolds, thin cushions and vibration dampers, and membranes for separations.

  相似文献   


2.
The self‐assembly of nanostructured globular protein arrays in thin films is demonstrated using protein–polymer block copolymers based on a model protein mCherry and the polymer poly(oligoethylene glycol acrylate) (POEGA). Conjugates are flow coated into thin films on a poly(ethylene oxide) grafted Si surface, forming self‐assembled cylindrical nanostructures with POEGA domains selectively segregating to the air–film interface. Long‐range order and preferential arrangement of parallel cylinders templated by selective surfaces are demonstrated by controlling relative humidity. Long‐range order increases with coating speed when the film thicknesses are kept constant, due to reduced nucleation per unit area of drying film. Fluorescence emission spectra of mCherry in films prepared at <25% relative humidity shows a small shift suggesting that proteins are more perturbed at low humidity than high humidity or the solution state.

  相似文献   


3.
The synthesis of poly(ionic liquid) (PIL) nanoparticles grafted with a poly(N‐isopropyl acrylamide) (PNIPAM) brush shell is reported, which shows responsiveness to temperature and ionic strength in an aqueous solution. The PIL nanoparticles are first prepared via aqueous dispersion polymerization of a vinyl imidazolium‐based ionic liquid monomer, which is purposely designed to bear a distal atom transfer radical polymerization (ATRP) initiating group attached to the long alkyl chain via esterification reaction. The size of the PIL nanoparticles can be readily tuned from 25 to 120 nm by polymerization at different monomer concentrations. PNIPAM brushes are successfully grafted from the surface of the poly(ionic liquid) nanoparticles via ATRP. The stimuli‐responsive behavior of the poly(ionic liquid) nanoparticles grafted with PNIPAM brushes (NP‐g‐PNIPAM) in aqueous phase is studied in detail. Enhanced colloidal stability of the NP‐g‐PNIPAM brush particles at high ionic strength compared to pure PIL nanoparticles at room temperature is achieved. Above the lower critical solution temperature (LCST) of PNIPAM, the brush particles remain stable, but a decrease in hydrodynamic radius due to the collapse of the PNIPAM brush onto the PIL nanoparticle surface is observed.

  相似文献   


4.
Anisotropic polymer particles such as Janus particles have attracted significant attention in recent years because of their unique properties and unusual self‐assembly behavior. Most anisotropic polymer particles synthesized so far, however, only have different chemical regions compartmentalized on the particles. It remains a great challenge to fabricate anisotropic polymer particles with different shapes within a single particle. A novel approach is developed to prepare anisotropic polymer particles that contain two hemispheres with different curvatures by annealing polystyrene microspheres on poly(vinyl alcohol) films. During the annealing process, the polymer microspheres gradually sink into the polymer films and transform to asymmetric polymer particles, driven by the surface and interfacial tensions of the polymers. Selective removal techniques are also used to confirm the morphologies of the asymmetric particles.

  相似文献   


5.
Supramolecular polyfluorenol enable assembly into conjugated polymer nanoparticles (CPNs). Poly{9‐[4‐(octyloxy)phenyl]fluoren‐9‐ol‐2,7‐diyl} (PPFOH)‐based supramolecular nanoparticles are prepared via reprecipitation. PPFOH nanoparticles with diameters ranging from 40 to 200 nm are obtained by adding different amounts of water into DMF solution. Size‐dependent luminescence is observed in PPFOH‐based hydrogen‐bonded nanoparticles that is different from that of poly(9,9‐dioctylfluorenes). Finally, white light‐emitting devices using CPNs with a size of 80 nm exhibit white emission with the CIE coordinates (0.31, 0.34). Amphiphilic conjugated polymer nanoparticles are potential organic nano‐inks for the fabrication of organic devices in printed electronics.

  相似文献   


6.
Continuous conductive gold nanofibers are prepared via the “tubes by fiber templates” process. First, poly(l‐lactide) (PLLA)‐stabilized gold nanoparticles (AuNP) with over 60 wt% gold are synthesized and characterized, including gel permeation chromatography coupled with a diode array detector. Subsequent electrospinning of these AuNP with template PLLA results in composite nanofibers featuring a high gold content of 57 wt%. Highly homogeneous gold nanowires are obtained after chemical vapor deposition of 345 nm of poly(p‐xylylene) (PPX) onto the composite fibers followed by pyrolysis of the polymers at 1050 °C. The corresponding heat‐induced transition from continuous gold‐loaded polymer tubes to smooth gold nanofibers is studied by transmission electron microscopy and helium ion microscopy using both secondary electrons and Rutherford backscattered ions.

  相似文献   


7.
Cross‐linked azobenzene liquid‐crystalline polymer films with a poly(oxyethylene) backbone are synthesized by photoinitiated cationic copolymerization. Azobenzene moieties in the film surface toward the light source are simultaneously photoaligned during photopolymerization with unpolarized 436 nm light and thus form a splayed alignment in the whole film. The prepared films show reversible photoinduced bending behavior with opposite bending directions when different surfaces of one film face to ultraviolet light irradiation.

  相似文献   


8.
Optically active nano‐ and microparticles have constituted a significant category of advanced functional materials. However, constructing optically active particles derived from synthetic helical polymers still remains as a big challenge. In the present study, it is attempted to induce a racemic helical polymer (containing right‐ and left‐handed helices in equal amount) to prefer one predominant helicity in aqueous media by using emulsifier in the presence of chiral additive (emulsification process). Excitingly, the emulsification process promotes the racemic helical polymer to unify the helicity and directly provides optically active nanoparticles constructed by chirally helical polymer. A possible mechanism is proposed to explain the emulsification‐induced homohelicity effect. The present study establishes a novel strategy for preparing chirally helical polymer‐derived optically active nanoparticles based on racemic helical polymers.

  相似文献   


9.
A robust and straightforward approach is introduced to synthesize inorganic nanoparticles chemically grafted with a zwitterionic poly(2‐methacryroyloxyethylphosphorylcholine) (PMPC) thin layers. The synthesis method is based on the surface‐mediated seeded polymerization. In order to observe how the polymer chain architectures affect colloidal interactions, the zinc oxide nanoparticles are grafted with linear brushes and with a thin hydrogel layer, respectively. The thickness of PMPC shell layers spans a few nanometers. The studies on suspension rheology for the nanoparticles show that the nanoparticles with PMPC brushes show the stronger repulsive force than those with the PMPC gel shell due to the entropic stabilization. When the shear force is applied to the Pickering emulsion produced by assembly of the nanoparticles, it is noticeable that the presence of PMPC brushes on the particles rather enhances the drop‐to‐drop attraction, which presumably stems from the entanglement of polymer chains between the contacted interfacial planes of the emulsion droplets during shearing.

  相似文献   


10.
The surface of polyacrylonitrile (PAN) film is treated with ethyleneamines (EDA) in a simple chemical vapor phase reaction. Successful introduction of amine functional groups on the cyano group of PAN backbone is verified by FT‐IR and NMR measurements. Further UV‐vis and photoluminescence analyses show a red shift of the emission peak after repeated EDA treatment, which might be attributed to the formation of imine conjugation from newly formed carbon‐nitrogen bonds on the PAN backbone. Further confocal laser scanning microscopy reveals that selective patterning of EDA on PAN films is possible via local polydimethylsiloxane masking. The results indicate that both chemical and optical patterning on PAN film can be realized via a single reaction and show the potential of this novel methodology in selective patterning.

  相似文献   


11.
A facile and universal method is presented for the preparation of polymer brushes on amorphous TiO2 film. Homogeneous and stable poly(methyl methacrylate), polystyrene, poly(4‐vinylpyridine), and poly(N‐vinyl imidazole) (PNVI) brushes up to 550 nm are directly created onto TiO2 via UV‐induced photopolymerization of corresponding monomers. Kinetic studies reveal a linear increase in thickness with the polymerization time. Characterization of the resulting polymer brushes by FTIR spectroscopy, X‐ray photoelectron spectroscopy, contact angle, and atomic force microscopy (AFM) indicates an efficient UV‐grafting reaction. Finally, we have demonstrated the possibility in converting the PNVI brushes to poly(vinyl imidazolium bromide), i.e., poly(ionic liquid) brushes by polymer–analogous reactions.

  相似文献   


12.
A new and easy method of stimuli‐triggered growth and removal of a bioreducible nanoshell on nanoparticles is reported. The results show that pH or temperature could induce the aggregation of disulfide‐contained branched polymers at the surface of nanoparticles; subsequently, the aggregated polymers could undergo intermolecular disulfide exchange to cross‐link the aggregated polymers, forming a bioreducible polymer shell around nanoparticles. When these nanoparticles with a polymer shell are treated with glutathione (GSH) or d,l ‐dithiothreitol (DTT), the polymer shell could be easily removed from the nanoparticles. The potential application of this method is demonstrated by easily growing and removing a bioreducible shell from liposomes, and improvement of in vivo gene transfection activity of liposomes with a bioreducible PEG shell.

  相似文献   


13.
Monoamino functionalized ethylenoxide (EO)/propylenoxide oligomers (Jeffamine) are linked chemically to poly(vinyl chloride) (PVC) using trichlorotriazine chemistry in order to prepare nonmigrating internally plasticized materials. The dependence of the plasticizer efficiency on both the number of anchoring points to the chains and the PVC/plasticizer compatibility is investigated using oligomers of different molecular weight and hydrophilic–hydrophobic balance. Hydrophilic oligomers (containing predominantly EO) of molecular weights between 2000 and 5000 g mol−1 exhibit excellent plasticizer efficiency, nearly identical to di‐2‐ethylhexylphthalate (DOP) in conventional PVC/DOP mixtures and may therefore be used as nonmigrating equivalents for DOP.

  相似文献   


14.
The first vapor‐phase deposition of poly(vinyl cinnamate) (PVCin) is reported. Initiated chemical vapor deposition (iCVD) is used to synthesize PVCin thin films with an average thickness of 100 nm. Free radical polymerization and cyclization reactions compete during the deposition process, with approximately 45% of the repeat units undergoing cyclization. Exposure to UV light (λ = 254 nm) induces dimerization (cross‐linking) of the PVCin, which is quantified using spectroscopic techniques. Approximately 90% of the free cinnamate moieties are dimerized at a UV dose of 300 mJ cm−2. PVCin is also incorporated into a copolymer with N‐isopropylacrylamide, which exhibits a characteristic change in hydrophilicity with temperature. The copolymer is selectively cross‐linked through a mask, and reversible swelling of patterns with 30 μm resolution is demonstrated by submerging the film in water.

  相似文献   


15.
The synthesis and electrochemical characterization of novel polymers bearing phenoxyl‐radicals as redox‐active side chains is described. The monomers are synthesized from the corresponding phenols and quinones, respectively. These compounds are subsequently poly­merized via ring‐opening metathesis polymerization. The electrochemical properties of the phenoxyl‐radical polymers are characterized using cyclic voltammetry and the most promising polymer is investigated as active material in a lithium coin‐cell, creating the first phenoxyl‐lithium battery. These phenoxyl‐containing polymers represent interesting anode materials for organic radical and lithium batteries due to their suitable redox‐potentials and possibility to create batteries with higher potentials as well as straightforward synthesis procedures.

  相似文献   


16.
Polymer–drug conjugates have attracted great interest as one category of various promising nanomedicines due to the advantages of high drug‐loading capacity, negligible burst release, and improved pharmacokinetics as compared with the small molecular weight drugs or the polymeric delivery systems with physically encapsulated drugs. Herein, a new type of oxidation‐responsive polymer–drug conjugates composed of a poly(ethylene glycol) (PEG) block and a hydrophobic polyacrylate block to which Naproxen is attached through a phenylboronic ester linker is reported. The amphiphilic block copolymers are synthesized through the reversible addition–fragmentation chain transfer polymerization of the Naproxen‐containing acrylic monomer using a PEG chain transfer agent. In neutral aqueous buffer, the conjugates formed nanoparticles with diameters of ≈150–300 nm depending on the length of the hydrophobic segment. The dynamic covalent bond of the phenylboronic ester is stabilized due to the hydrophobic microenvironment inside the nanoparticles. Upon exposure to H2O2, the phenylboronic ester is oxidized rapidly into the phenol derivative which underwent a 1,6‐elimination reaction, releasing the intact Naproxen. The rate of drug release is influenced by the concentration of H2O2 and the hydrophobic block length. This type of oxidation‐responsive polymer–drug conjugate is feasible for other drugs containing hydroxyl group or amino group.

  相似文献   


17.
The use of zinc glutarate (ZnGA) as a heterogeneous catalyst for the copolymerization of epichlorohydrin, an epoxide with an electron‐withdrawing substituent, and CO2 is reported. This catalyst shows the highest selectivity (98%) for polycarbonate over the cyclic carbonate in epichlorohydrin/CO2 copolymerization under mild conditions. The (epichlorohydrin‐co‐CO2) polymer exhibits a high glass transition temperature (Tg), 44 °C, which is the maximum Tg value obtained for the (epichlorohydrin‐co‐CO2) polymer to date.

  相似文献   


18.
Photolithographic patterning of a xanthate precursor to poly(3,4‐diphenyl‐2,5‐thienylene vinylene) is described. Unlike xanthate precursors to poly(p‐phenylene vinylene), the thienylene vinylene analogue patterns as a positive tone resist. Characterization of irradiated films reveals photooxidative cleavage of the vinylene linker decreases the molecular weight of the polymer (increasing the solubility of the UV‐exposed areas). As a result of the mechanism, the developed pattern sees no UV light exposure, which is a significant advantage compared with negative‐tone‐conjugated polymer resists. Single micron resolution of a low‐bandgap polymer is achieved in an efficient and scalable process.

  相似文献   


19.
The different mechanisms contributing to adhesion between two polymer surfaces are summarized and described in individual examples, which represent either seminal works in the field of adhesion science or novel approaches to achieve polymer–polymer adhesion. A further objective of this article is the development of new methodologies to achieve strong adhesion between low surface energy polymers.

  相似文献   


20.
Porous polymer membranes made via electrostatic complexation are fabricated from a water‐soluble poly(ionic liquid) (PIL) for the first time. The porous structure is formed as a consequence of simultaneous phase separation of the PIL and ionic complexation with an acid, which occurred in a basic solution of a nonsolvent for the PIL. These membranes have a stimuli‐responsive porosity, with open and closed pores in isopropanol and in water, respectively. This property is quantitatively demonstrated in filtration experiments, where water is passing much slower through the membranes than isopropanol.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号