首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Diabetes mellitus (DM) is a chronic metabolic condition that can lead to significant complications and a high fatality rate worldwide. Efforts are ramping up to find and develop novel α-glucosidase and α-amylase inhibitors that are both effective and potentially safe. Traditional methodologies are being replaced with new techniques that are less complicated and less time demanding; yet, both the experimental and computational strategies are viable and complementary in drug discovery and development. As a result, this study was conducted to investigate the in vitro anti-diabetic potential of aqueous acetone Helichrysum petiolare and B.L Burtt extract (AAHPE) using a 2-NBDG, 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxy-d-glucose uptake assay. In addition, we performed molecular docking of the flavonoid constituents identified and quantified by liquid chromatography-mass spectrometry (LC-MS) from AAHPE with the potential to serve as effective and safe α-amylase and α-glucosidase inhibitors, which are important in drug discovery and development. The results showed that AAHPE is a potential inhibitor of both α-amylase and α-glucosidase, with IC50 values of 46.50 ± 6.17 (µg/mL) and 37.81 ± 5.15 (µg/mL), respectively. This is demonstrated by a significant increase in the glucose uptake activity percentage in a concentration-dependent manner compared to the control, with the highest AAHPE concentration of 75 µg/mL of glucose uptake activity being higher than metformin, a standard anti-diabetic drug, in the insulin-resistant HepG2 cell line. The molecular docking results displayed that the constituents strongly bind α-amylase and α-glucosidase while achieving better binding affinities that ranged from ΔG = −7.2 to −9.6 kcal/mol (compared with acarbose ΔG = −6.1 kcal/mol) for α-amylase, and ΔG = −7.3 to −9.0 kcal/mol (compared with acarbose ΔG = −6.3 kcal/mol) for α-glucosidase. This study revealed the potential use of the H. petiolare plant extract and its phytochemicals, which could be explored to develop potent and safe α-amylase and α-glucosidase inhibitors to treat postprandial glycemic levels in diabetic patients.  相似文献   

2.
The present study investigated the antidiabetic properties of the extracts and fractions from leaves and stem bark of M. glabra based on dipeptidyl peptidase-4 (DPP-4) and α-Amylase inhibitory activity assays. The chloroform extract of the leaves was found to be most active towards inhibition of DPP-4 and α-Amylase with IC50 of 169.40 μg/mL and 303.64 μg/mL, respectively. Bioassay-guided fractionation of the leaves’ chloroform extract revealed fraction 4 (CF4) as the most active fraction (DPP-4 IC50: 128.35 μg/mL; α-Amylase IC50: 170.19 μg/mL). LC-MS/MS investigation of CF4 led to the identification of trans-decursidinol (1), swermirin (2), methyl 3,4,5-trimethoxycinnamate (3), renifolin (4), 4′,5,6,7-tetramethoxy-flavone (5), isorhamnetin (6), quercetagetin-3,4′-dimethyl ether (7), 5,3′,4′-trihydroxy-6,7-dimethoxy-flavone (8), and 2-methoxy-5-acetoxy-fruranogermacr-1(10)-en-6-one (9) as the major components. The computational study suggested that (8) and (7) were the most potent DPP-4 and α-Amylase inhibitors based on their lower binding affinities and extensive interactions with critical amino acid residues of the respective enzymes. The binding affinity of (8) with DPP-4 (−8.1 kcal/mol) was comparable to that of sitagliptin (−8.6 kcal/mol) while the binding affinity of (7) with α-Amylase (−8.6 kcal/mol) was better than acarbose (−6.9 kcal/mol). These findings highlight the phytochemical profile and potential antidiabetic compounds from M. glabra that may work as an alternative treatment for diabetes.  相似文献   

3.
The resolution of racemic 1-phenylphosphin-2-en-4-one 1-oxide (2), was achieved through the fractional crystallization of its diastereomeric complexes with (4R,5R)-(−)-2,2-dimethyl -α,α,α′,α′-tetraphenyl-dioxolan-4,5-dimethanol (R,R-TADDOL) followed by the liberation of the individual enantiomers of 2 by flash chromatography on silica gel columns. The resolution process furnished the two enantiomers of 2 of 99.1 and 99.9% e.e. at isolated yields of 62 and 59% (counted for the single enantiomer), respectively. The absolute configurations of the two enantiomers were established by means of X-ray crystallography of their diastereomerically pure complexes, i.e., (R)-2•R,R)-TADDOL and (S)-2•(R,R)-TADDOL. The structural analysis revealed that in the (R)-2•(R,R)-TADDOL complex, the P-phenyl substituent occupied a pseudoequatorial position, whereas in (S)-2•(R,R)-TADDOL, it appeared in both the pseudoequatorial and the pseudoaxial positions in four symmetrically independent molecules. Concurrent conformational changes of the TADDOL molecules were best described by the observed changes of a pseudo-torsional CO...OC angle that could be considered as a possible measure of TADDOL conformation in its receptor–ligand complexes. The structural analysis of the (R,R)-TADDOL molecule revealed that efficiency of this compound for use as an effective resolving factor comes from its ability to flexibly fit its structure to both enantiomers of a ligand molecule, producing a rare case of resolution for both pure enantiomers with one chiral separating agent. The resolved (R)-2 was used to assign the absolute configuration of a recently described (−)-1-phenylphosphin-2-en-4-one 1-sulfide by chemical correlation. In addition, an attempted stereoretentive reduction of (R)-2 by PhSiH3 at 60 °C revealed an unexpectedly low barrier for P-inversion in 1-phenylphosphin-2-en-4-one.  相似文献   

4.
In the current study, a 2D similarity/docking-based study was used to predict the potential binding modes of icotinib, almonertinib, and olmutinib into EGFR. The similarity search of icotinib, almonertinib, and olmutinib against a database of 154 EGFR ligands revealed the highest similarity scores with erlotinib (0.9333), osimertinib (0.9487), and WZ4003 (0.8421), respectively. In addition, the results of the docking study of the three drugs into EGFR revealed high binding free energies (ΔGb = −6.32 to −8.42 kcal/mol) compared to the co-crystallized ligands (ΔGb = −7.03 to −8.07 kcal/mol). Analysis of the top-scoring poses of the three drugs was done to identify their potential binding modes. The distances between Cys797 in EGFR and the Michael acceptor sites in almonertinib and olmutinib were determined. In conclusion, the results could provide insights into the potential binding characteristics of the three drugs into EGFR which could help in the design of new more potent analogs.  相似文献   

5.
A diimine ligand having two [2.2]paracyclophanyl substituents at the N atoms (L1) was prepared from the reaction of amino[2.2]paracyclophane with acenaphtenequinone. The ligand reacts with NiBr2(dme) (dme: 1,2-dimethoxyethane) to form the dibromonickel complex with (R,R) and (S,S) configuration, NiBr2(L1). The structure of the complex was confirmed by X-ray crystallography. NiBr2(L1) catalyzes oligomerization of ethylene in the presence of methylaluminoxane (MAO) co-catalyst at 10–50 °C to form a mixture of 1- and 2-butenes after 3 h. The reactions for 6 h and 8 h at 25 °C causes further increase of 2-butene formed via isomerization of 1-butene and formation of hexenes. Reaction of 1-hexene catalyzed by NiBr2(L1)–MAO produces 2-hexene via isomerization and C12 and C18 hydrocarbons via oligomerization. Consumption of 1-hexene of the reaction obeys first-order kinetics. The kinetic parameters were obtained to be ΔG = 93.6 kJ mol−1, ΔH = 63.0 kJ mol−1, and ΔS = −112 J mol−1deg−1. NiBr2(L1) catalyzes co-dimerization of ethylene and 1-hexene to form C8 hydrocarbons with higher rate and selectivity than the tetramerization of ethylene.  相似文献   

6.
Adverse effects associated with synthetic drugs in diabetes therapy has prompted the search for novel natural lead compounds with little or no side effects. Effects of phenolic compounds from Carpobrotus edulis on carbohydrate-metabolizing enzymes through in vitro and in silico methods were assessed. Based on the half-maximal inhibitory concentrations (IC50), the phenolic extract of the plant had significant (p < 0.05) in vitro inhibitory effect on the specific activity of alpha-amylase (0.51 mg/mL), alpha-glucosidase (0.062 mg/mL) and aldose reductase (0.75 mg/mL), compared with the reference standards (0.55, 0.72 and 7.05 mg/mL, respectively). Molecular interactions established between the 11 phenolic compounds identifiable from the HPLC chromatogram of the extract and active site residues of the enzymes revealed higher binding affinity and more structural compactness with procyanidin (−69.834 ± 6.574 kcal/mol) and 1,3-dicaffeoxyl quinic acid (−42.630 ± 4.076 kcal/mol) as potential inhibitors of alpha-amylase and alpha-glucosidase, respectively, while isorhamnetin-3-O-rutinoside (−45.398 ± 4.568 kcal/mol) and luteolin-7-O-beta-d-glucoside (−45.102 ± 4.024 kcal/mol) for aldose reductase relative to respective reference standards. Put together, the findings are suggestive of the compounds as potential constituents of C. edulis phenolic extract responsible for the significant hypoglycemic effect in vitro; hence, they could be exploited in the development of novel therapeutic agents for type-2 diabetes and its retinopathy complication.  相似文献   

7.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent for the COVID-19 pandemic, which generated more than 1.82 million deaths in 2020 alone, in addition to 83.8 million infections. Currently, there is no antiviral medication to treat COVID-19. In the search for drug leads, marine-derived metabolites are reported here as prospective SARS-CoV-2 inhibitors. Two hundred and twenty-seven terpene natural products isolated from the biodiverse Red-Sea ecosystem were screened for inhibitor activity against the SARS-CoV-2 main protease (Mpro) using molecular docking and molecular dynamics (MD) simulations combined with molecular mechanics/generalized Born surface area binding energy calculations. On the basis of in silico analyses, six terpenes demonstrated high potency as Mpro inhibitors with ΔGbinding ≤ −40.0 kcal/mol. The stability and binding affinity of the most potent metabolite, erylosides B, were compared to the human immunodeficiency virus protease inhibitor, lopinavir. Erylosides B showed greater binding affinity towards SARS-CoV-2 Mpro than lopinavir over 100 ns with ΔGbinding values of −51.9 vs. −33.6 kcal/mol, respectively. Protein–protein interactions indicate that erylosides B biochemical signaling shares gene components that mediate severe acute respiratory syndrome diseases, including the cytokine- and immune-signaling components BCL2L1, IL2, and PRKC. Pathway enrichment analysis and Boolean network modeling were performed towards a deep dissection and mining of the erylosides B target–function interactions. The current study identifies erylosides B as a promising anti-COVID-19 drug lead that warrants further in vitro and in vivo testing.  相似文献   

8.
The urease enzyme has been an important target for the discovery of effective pharmacological and agricultural products. Thirteen regio-selectively alkylated benzimidazole-2-thione derivatives have been designed to carry the essential features of urease inhibitors. The urease enzyme was isolated from Helicobacter pylori as a recombinant urease utilizing the His-tag method. The isolated enzyme was purified and characterized using chromatographic and FPLC techniques showing a maximal activity of 200 mg/mL. Additionally, the commercial Jack bean urease was purchased and included in this study for comparative and mechanistic investigations. The designed compounds were synthesized and screened for their inhibitory activity against the two ureases. Compound 2 inhibited H. pylori and Jack bean ureases with IC50 values of 0.11; and 0.26 mM; respectively. While compound 5 showed IC50 values of 0.01; and 0.29 mM; respectively. Compounds 2 and 5 were docked against Helicobacter pylori urease (PDB ID: 1E9Y; resolution: 3.00 Å) and exhibited correct binding modes with free energy (ΔG) values of −9.74 and −13.82 kcal mol−1; respectively. Further; the in silico ADMET and toxicity properties of 2 and 5 indicated their general safeties and likeness to be used as drugs. Finally, the compounds’ safety was authenticated by an in vitro cytotoxicity assay against fibroblast cells.  相似文献   

9.
Phenolic compounds present in common beans (Phaseolus vulgaris L.) have been reported to possess antimicrobial, anti-inflammatory and ultraviolet radiation (UVR) protective properties. UVR from sunlight, which consists of UV-B and UV-A radiations, induces reactive oxygen species (ROS) and free radical formation, consequently activating proteinases and enzymes such as elastase and tyrosinase, leading to premature skin aging. The objective of this work was to extract, characterize and evaluate the antioxidant and antiaging potential of polyphenols from a black bean endemic variety. The polyphenolic extract was obtained from black beans by supercritical fluid extraction (SFE) using CO2 with a mixture of water–ethanol as a cosolvent and conventional leaching with a mixture of water–ethanol as solvent. The polyphenolic extracts were purified and characterized, and antioxidant potential, tyrosinase and elastase inhibitory potentials were measured. The extract obtained using the SFE method using CO2 and H2O–Ethanol (50:50 v/v) as a cosolvent showed the highest total phenolic compounds yield, with 66.60 ± 7.41 mg GAE/g coat (p > 0.05) and 7.30 ± 0.64 mg C3GE/g coat (p < 0.05) of anthocyanins compared to conventional leaching. Nineteen tentative phenolic compounds were identified in leaching crude extract using ESI-QTOF. Quercetin-3-D-galactoside was identified in crude and purified extracts. The purified SFC extract showed IC50 0.05 ± 0.002 and IC50 0.21 ± 0.008 mg/mL for DPPH and ABTS, respectively. The lowest IC50 value of tyrosinase inhibition was 0.143 ± 0.02 mg/mL and 0.005 ± 0.003 mg/mL of elastase inhibition for leaching purified extract. Phenolic compounds presented theoretical free energy values ranging from −5.3 to −7.8 kcal/mol for tyrosinase and −2.5 to −6.8 kcal/mol for elastase in molecular docking (in silico) studies. The results suggest that the purified extracts obtained by SFE or conventional leaching extraction could act as antioxidant and antiaging ingredients for cosmeceutical applications.  相似文献   

10.
The energy and structural parameters were obtained for all forms of the carbonyl complex of osmium Os3(CO)12 with D3h and D3 symmetries using density functional theory (DFT) methods. The calculations took into account various levels of relativistic effects, including those associated with nonconservation of spatial parity. It was shown that the ground state of Os3(CO)12 corresponds to the D3 symmetry and thus may be characterized either as left-twisted (D3S) or right-twisted (D3R). The D3S↔D3R transitions occur through the D3h transition state with an activation barrier of ~10–14 kJ/mol. Parity violation energy difference (PVED) between D3S and D3R states equals to ~5 × 10−10 kJ/mol. An unusual three-center exchange interaction was found inside the {Os3} fragment. It was found that the cooperative effects of the mutual influence of osmium atoms suppress the chirality of the electron system in the cluster.  相似文献   

11.
A voltammetric and scanning electrochemical microscopy (SECM) investigation was performed on an inherently chiral oligomer-coated gold electrode to establish its general properties (i.e., conductivity and topography), as well as its ability to discriminate chiral electroactive probe molecules. The electroactive monomer (S)-2,2′-bis(2,2′-bithiophene-5-yl)-3,3′-bibenzothiophene ((S)-BT2T4) was employed as reagent to electrodeposit, by cyclic voltammetry, the inherently chiral oligomer film of (S)-BT2T4 (oligo-(S)-BT2T4) onto the Au electrode surface (resulting in oligo-(S)-BT2T4-Au). SECM measurements, performed in either feedback or competition mode, using the redox mediators [Fe(CN)6]4− and [Fe(CN)6]3− in aqueous solutions, and ferrocene (Fc), (S)-FcEA, (R)-FcEA and rac-FcEA (FcEA is N,N-dimethyl-1-ferrocenylethylamine) in CH3CN solutions, indicated that the oligomer film, as produced, was uncharged. The use of [Fe(CN)6]3− allowed establishing that the oligomer film behaved as a porous insulating membrane, presenting a rather rough surface. This was inferred from both the approach curves and linear and bidimensional SECM scans, which displayed negative feedback effects. The oligomer film acquired semiconducting or fully conducting properties when the Au electrode was biased at potential more positive than 0.6 V vs. Ag|AgCl|KCl. Under the latter conditions, the approach curves displayed positive feedback effects. SECM measurements, performed in competition mode, allowed verifying the discriminating ability of the oligo-(S)-BT2T4 film towards the (S)-FcEA and (R)-FcEA redox mediators, which confirmed the results obtained by cyclic voltammetry. SECM linear scans indicated that the enantiomeric discriminating ability of the oligo-(S)-BT2T4 was even across its entire surface.  相似文献   

12.
Chemical conversion of the extract of natural resources is a very attractive way to expand the chemical space to discover bioactive compounds. In order to search for new medicines to treat parasitic diseases that cause high morbidity and mortality in affected countries in the world, the ethyl acetate extract from the rhizome of Alpinia galanga (L.) has been chemically converted by epoxidation using dioxirane generated in situ. The biological activity of chemically converted extract (CCE) of A. galanga (L.) significantly increased the activity against Leishmania major up to 82.6 ± 6.2 % at 25 μg/mL (whereas 2.7 ± 0.8% for the original extract). By bioassay-guided fractionation, new phenylpropanoids (1–6) and four known compounds, hydroquinone (7), 4-hydroxy(4-hydroxyphenyl)methoxy)benzaldehyde (8), isocoumarin cis 4-hydroxymelein (9), and (2S,3S,6R,7R,9S,10S)-humulene triepoxide (10) were isolated from CCE. The structures of isolated compounds were determined by spectroscopic analyses of 1D and 2D NMR, IR, and MS spectra. The most active compound was hydroquinone (7) with IC50 = 0.37 ± 1.37 μg/mL as a substantial active principle of CCE. In addition, the new phenylpropanoid 2 (IC50 = 27.8 ± 0.34 μg/mL) also showed significant activity against L. major compared to the positive control miltefosine (IC50 = 7.47 ± 0.3 μg/mL). The activities of the isolated compounds were also evaluated against Plasmodium falciparum, Trypanosoma brucei gambisense and Trypanosoma brucei rhodeisense. Interestingly, compound 2 was selectively active against trypanosomes with potent activity. To the best of our knowledge, this is the first report on the bioactive “unnatural” natural products from the crude extract of A. galanga (L.) by chemical conversion and on its activities against causal pathogens of leishmaniasis, trypanosomiasis, and malaria.  相似文献   

13.
Neurodegenerative diseases, for example Alzheimer’s, are perceived as driven by hereditary, cellular, and multifaceted biochemical actions. Numerous plant products, for example flavonoids, are documented in studies for having the ability to pass the blood-brain barrier and moderate the development of such illnesses. Computer-aided drug design (CADD) has achieved importance in the drug discovery world; innovative developments in the aspects of structure identification and characterization, bio-computational science, and molecular biology have added to the preparation of new medications towards these ailments. In this study we evaluated nine flavonoid compounds identified from three medicinal plants, namely T. diversifolia, B. sapida, and I. gabonensis for their inhibitory role on acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and monoamine oxidase (MAO) activity, using pharmacophore modeling, auto-QSAR prediction, and molecular studies, in comparison with standard drugs. The results indicated that the pharmacophore models produced from structures of AChE, BChE and MAO could identify the active compounds, with a recuperation rate of the actives found near 100% in the complete ranked decoy database. Moreso, the robustness of the virtual screening method was accessed by well-established methods including enrichment factor (EF), receiver operating characteristic curve (ROC), Boltzmann-enhanced discrimination of receiver operating characteristic (BEDROC), and area under accumulation curve (AUAC). Most notably, the compounds’ pIC50 values were predicted by a machine learning-based model generated by the AutoQSAR algorithm. The generated model was validated to affirm its predictive model. The best models achieved for AChE, BChE and MAO were models kpls_radial_17 (R2 = 0.86 and Q2 = 0.73), pls_38 (R2 = 0.77 and Q2 = 0.72), kpls_desc_44 (R2 = 0.81 and Q2 = 0.81) and these externally validated models were utilized to predict the bioactivities of the lead compounds. The binding affinity results of the ligands against the three selected targets revealed that luteolin displayed the highest affinity score of −9.60 kcal/mol, closely followed by apigenin and ellagic acid with docking scores of −9.60 and −9.53 kcal/mol, respectively. The least binding affinity was attained by gallic acid (−6.30 kcal/mol). The docking scores of our standards were −10.40 and −7.93 kcal/mol for donepezil and galanthamine, respectively. The toxicity prediction revealed that none of the flavonoids presented toxicity and they all had good absorption parameters for the analyzed targets. Hence, these compounds can be considered as likely leads for drug improvement against the same.  相似文献   

14.
During a phytochemical investigation of the unripe fruits of Rubus chingii Hu (i.e., Fructus Rubi, a traditional Chinese medicine named “Fu-Pen-Zi”), a number of highly oxygenated terpenoids were isolated and characterized. These included nine ursane-type (1, 2, and 4–10), five oleanane-type (3, 11–14), and six cucurbitane-type (15–20) triterpenoids, together with five ent-kaurane-type diterpenoids (21–25). Among them, (4R,5R,8R,9R,10R,14S,17S,18S,19R,20R)-2,19α,23-trihydroxy-3-oxo-urs-1,12-dien-28-oic acid (rubusacid A, 1), (2R*,4S*,5R*,8R*,9R*,10R*,14S*,17S*, 18S*,19R*,20R*)-2α,19α,24-trihydroxy-3-oxo-urs-12-en-28-oic acid (rubusacid B, 2), (5R,8R,9R,10R, 14S,17R,18S,19S)-2,19α-dihydroxy-olean-1,12-dien-28-oic acid (rubusacid C, 3), and (3S,5S,8S,9R, 10S,13R,16R)-3α,16α,17-trihydroxy-ent-kaur-2-one (rubusone, 21) were previously undescribed. Their chemical structures and absolute configurations were elucidated on the basis of spectroscopic data and electronic circular dichroism (ECD) analyses. Compounds 1 and 3 are rare naturally occurring pentacyclic triterpenoids featuring a special α,β-unsaturated keto-enol (diosphenol) unit in ring A. Cucurbitacin B (15), cucurbitacin D (16), and 3α,16α,20(R),25-tetrahydroxy-cucurbita-5,23- dien-2,11,22-trione (17) were found to have remarkable inhibitory effects against NF-κB, with IC50 values of 0.08, 0.61, and 1.60 μM, respectively.  相似文献   

15.
(−)-α-Bisabolol, a bioactive monocyclic sesquiterpene alcohol, has been used in pharmaceutical and cosmetic products with anti-inflammatory, antibacterial and skin-caring properties. However, the poor water solubility of (−)-α-bisabolol limits its pharmaceutical applications. It has been recognized that microbial transformation is a very useful approach to generate more polar metabolites. Fifteen microorganisms were screened for their ability to metabolize (−)-α-bisabolol in order to obtain its more polar derivatives, and the filamentous fungus Absidia coerulea was selected for scale-up fermentation. Seven new and four known metabolites were obtained from biotransformation of (−)-α-bisabolol (1), and all the metabolites exhibited higher aqueous solubility than that of the parent compound 1. The structures of newly formed metabolites were established as (1R,5R,7S)- and (1R,5S,7S)-5-hydroxy-α-bisabolol (2 and 3), (1R,5R,7S,10S)-5-hydroxybisabolol oxide B (4), (1R,7S,10S)-1-hydroxybisabolol oxide B (5), 12-hydroxy-α-bisabolol (7), (1S,3R,4S,7S)- and (1S,3S,4S,7S)-3,4-dihydroxy-α-bisabolol (8 and 10) on the basis of spectroscopic analyses. These compounds could also be used as reference standards for the detection and identification of the metabolic products of 1 in the mammalian system.  相似文献   

16.
The naturally occurring γ-cyclogeranylgeraniol called (+)-trixagol has been synthesised for the first time. Trixagol was readily available in five steps from (S)-2,2-dimethyl-6-methylene-1-cyclohexanemethanol. The enantiomer of trixagol, which equates to the terpenoid side chain of the naturally occurring 7,9-dialkylpurinium salt (−)-agelasine E, was prepared from the (R) enantiomer of the cyclohexanemethanol. Both trixagol enantiomers were moderately active against Mycobacterium tuberculosis.  相似文献   

17.
《Tetrahedron: Asymmetry》2007,18(15):1809-1827
The dipolar cycloaddition of (Z)-N-benzyl-(3-O-benzyl-1,2-O-isopropylidene-α-d-ribofuranos-5-ylidene)amine N-oxide to methyl acrylate gives a 53:16:26:5 diastereomeric mixture of isoxazolidine derivatives. The dipolar cycloaddition of the xylo analogue to methyl acrylate is more diastereoselective, producing a 44:13:43 mixture of only three diastereomers. The ribo-configured adducts have been converted (4 steps only) into the new (2R,6S,7S,8R,8aR)-, (2S,6S,7S,8R,8aR)-, (2S,6S,7S,8R,8aS)- and (2R,6S,7S,8R,8aS)-2,6,7,8-tetrahydroxyindolizidines. Similarly, the two xylo-configured major isoxazolidine derivatives were converted into the known derivatives (2R,6S,7R,8R,8aS)- and (2S,6S,7R,8R,8aR)-2,6,7,8-tetrahydroxyindolizidines. The six isomeric indolizidine derivatives obtained have been evaluated for their inhibiting activities towards 15 glycosidases. Only the (2R,6S,7S,8R,8aR)-configured isomer is a selective inhibitor of amyloglucosidases from Aspergillus niger (IC50 = 350 μM) and from Rhizopus mold (IC50 = 90 μM, Ki = 195 μM, non-competitive), the other indolizidines show very little inhibitory activity at 1 mM concentration.  相似文献   

18.
Masahiro Yoshimura 《Tetrahedron》2007,63(46):11399-11409
Hydrogenation of (Z)-3-phenyl-2-butenoic acid with a Ru(CH3COO)2[(R)-binap] (BINAP=2,2′-bis(diphenylphosphino)-1,1′-binaphthyl) catalyst in methanol gives (S)-3-phenyl-2-butanoic acid and its R enantiomer in a 97:3 (4 atm) to 94:6 (100 atm) ratio in quantitative yield. Both hydrogen gas and protic methanol participate in the saturation of the olefinic bond. Analysis of the products obtained using (Z)-3-phenyl-2-butenoic acid-3-13C and either H2, a 1:1 H2-D2 mixture, or D2 in CH3OD indicates that several catalytic cycles are operative, showing different reactivity and stereoselectivity. The major S enantiomer was formed primarily by the standard Ru monohydride mechanism, whereas the minor R isomer is produced via more complicated routes.  相似文献   

19.
In this study, two previously undescribed diterpenoids, (5R,10S,16R)-11,16,19-trihydroxy-12-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl-17(15→16),18(4→3)-diabeo-3,8,11,13-abietatetraene-7-one (1) and (5R,10S,16R)-11,16-dihydroxy-12-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl-17(15→16),18(4→3)-diabeo-4-carboxy-3,8,11,13-abietatetraene-7-one (2), and one known compound, the C13-nor-isoprenoid glycoside byzantionoside B (3), were isolated from the leaves of Clerodendrum infortunatum L. (Lamiaceae). Structures were established based on spectroscopic and spectrometric data and by comparison with literature data. The three terpenoids, along with five phenylpropanoids: 6′-O-caffeoyl-12-glucopyranosyloxyjasmonic acid (4), jionoside C (5), jionoside D (6), brachynoside (7), and incanoside C (8), previously isolated from the same source, were tested for their in vitro antidiabetic (α-amylase and α-glucosidase), anticancer (Hs578T and MDA-MB-231), and anticholinesterase activities. In an in vitro test against carbohydrate digestion enzymes, compound 6 showed the most potent effect against mammalian α-amylase (IC50 3.4 ± 0.2 μM) compared to the reference standard acarbose (IC50 5.9 ± 0.1 μM). As yeast α-glucosidase inhibitors, compounds 1, 2, 5, and 6 displayed moderate inhibitory activities, ranging from 24.6 to 96.0 μM, compared to acarbose (IC50 665 ± 42 μM). All of the tested compounds demonstrated negligible anticholinesterase effects. In an anticancer test, compounds 3 and 5 exhibited moderate antiproliferative properties with IC50 of 94.7 ± 1.3 and 85.3 ± 2.4 μM, respectively, against Hs578T cell, while the rest of the compounds did not show significant activity (IC50 > 100 μM).  相似文献   

20.
Herein is reported the synthesis of two Au(III) complexes bearing the (R,R)-(–)-2,3-Bis(tert-butylmethylphosphino)quinoxaline (R,R-QuinoxP*) or (S,S)-(+)-2,3-Bis(tert-butylmethylphosphino)quinoxaline (S,S-QuinoxP*) ligands. By reacting two stoichiometric equivalents of HAuCl4.3H2O to one equivalent of the corresponding QuinoxP* ligand, (R,R)-(–)-2,3-Bis(tert-butylmethylphosphino)quinoxalinedichlorogold(III) tetrachloroaurates(III) (1) and (S,S)-(+)-2,3-Bis(tert-butylmethylphosphino)quinoxalinedichlorogold(III) tetrachloroaurates(III) (2) were formed, respectively, in moderate yields. The structure of (S,S)-(+)-2,3-Bis(tert-butylmethylphosphino)quinoxalinedichlorogold(III) tetrachloroaurates(III) (2) was further confirmed by X-ray crystallography. The antiproliferative activities of the two compounds were evaluated in a panel of cell lines and exhibited promising results comparable to auranofin and cisplatin with IC50 values between 1.08 and 4.83 µM. It is noteworthy that in comparison to other platinum and ruthenium enantiomeric complexes, the two enantiomers (1 and 2) do not exhibit different cytotoxic effects. The compounds exhibited stability in biologically relevant media over 48 h as well as inert reactivity to excess glutathione at 37 °C. These results demonstrate that the Au(III) atom, stabilized by the QuinoxP* ligand, can provide exciting compounds for novel anticancer drugs. These complexes provide a new scaffold to further develop a robust and diverse library of chiral phosphorus Au(III) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号