首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Silicon photonics is no longer an emerging field of research and technology but a present reality with commercial products available on the market, where low‐dimensional silicon (nanosilicon or nano‐Si) can play a fundamental role. After a brief history of the field, the optical properties of silicon reduced to nanometric dimensions are introduced. The use of nano‐Si, in the form of Si nanocrystals, in the main building blocks of silicon photonics (waveguides, modulators, sources and detectors) is reviewed and discussed. Recent advances of nano‐Si devices such as waveguides, optical resonators (linear, rings, and disks) are treated. Emphasis is placed on the visible optical gain properties of nano‐Si and to the sensitization effect on Er ions to achieve infrared light amplification. The possibility of electrical injection in light‐emitting diodes is presented as well as the recent attempts to exploit nano‐Si for solar cells. In addition, nonlinear optical effects that will enable fast all‐optical switches are described.  相似文献   

2.
Ultra‐fast nano‐optics is a comparatively young and rapidly growing field of research aiming at probing, manipulating and controlling ultrafast optical excitations on nanometer length scales. This ability to control light on nanometric length and femtosecond time scales opens up exciting possibilities for probing dynamic processes in nanostructures in real time and space. This article gives a brief introduction into the emerging research field of ultrafast nano‐optics and discusses recent progress made in it. A particular emphasis is laid on the recent experimental work performed in the authors' laboratories. We specifically discuss how ultrafast nano‐optical techniques can be used to probe and manipulate coherent optical excitations in individual and dipole‐coupled pairs of quantum dots, probe the dynamics of surface plasmon polariton excitations in metallic nanostructures, generate novel nanometer‐sized ultrafast light and electron sources and reveal the dipole interaction between excitons and surface plasmon polaritons in hybrid metal‐semiconductor nanostructures. Our results indicate that such hybrid nanostructures carry significant potential for realizing novel nano‐optical devices such as ultrafast nano‐optical switches as well as surface plasmon polariton amplifiers and lasers.  相似文献   

3.
Optical resonators are important devices that control the properties of light and manipulate light–matter interaction. Various optical resonators are designed and fabricated using different techniques. For example, in coupled resonator optical waveguides, light energy is transported to other resonators through near‐field coupling. In recent years, magnetic optical resonators based on LC resonance have been realized in several metallic microstructures. Such devices possess stronger local resonance and lower radiation loss compared with electric optical resonators. This study provides an overall introduction on the latest progress in coupled magnetic resonator optical waveguide (CMROW). Various waveguides composed of different magnetic resonators are presented and Lagrangian formalism is used to describe the CMROW. Moreover, several interesting properties of CMROWs, such as abnormal dispersions and slow‐light effects, are discussed and CMROW applications in nonlinear and quantum optics are shown. Future novel nanophotonic devices can be developed using CMROWs.  相似文献   

4.
太赫兹波段表面等离子光子学研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
王玥  王暄  贺训军  梅金硕  陈明华  殷景华  雷清泉 《物理学报》2012,61(13):137301-137301
表面等离子光子学是研究金属、 半导体纳米结构材料独特的光学特性, 是目前光子学中最有吸引力、 发展最快的领域之一. 伴随着微/纳制造技术与计算机模拟技术的进步, 表面等离子光子学在可见光、 红外、 太赫兹以及微波频域得到了广泛研究, 在高灵敏生化传感、 亚波长光波导、 近场光学显微、 纳米光刻等领域有潜在的应用价值. 特别是人工超材料的发展, 为自然界长期缺乏响应太赫兹波的材料和器件奠定了基础, 从而也促进了太赫兹波段表面等离子光子学的研究. 本文从太赫兹表面等离子波的激发、 传导、 最新应用及未来发展趋势等几个方面进行了回顾和讨论, 将最新研究成果展示给读者.  相似文献   

5.
Energetic ion beams with diverse energies, species and beam dimensions have been extensively utilized to modify the properties of materials to achieve versatile applications in many aspects of industry, agriculture and scientific research. In optics, the ion‐beam technology has been applied to fabricate various micro‐ and submicrometric guiding structures on a wide range of optical crystals through the efficient modulation of the refractive indices or structuring of the surface, realizing various applications in many branches of photonics. The ion‐beam fabricated optical waveguides and other photonic structures have shown good guiding performance as well as properties related to the materials, suggesting promising potential for many aspects of photonics. This paper gives the state‐of‐the‐art review of fabrication, characterization and application on the ion‐beam‐processed micro‐ and submicrometric photonic structures by highlighting the most recent research progress. A brief prospect is presented by focusing on a few potential spotlights.  相似文献   

6.
Free‐standing ternary InGaAs nanowires (NW) are at the core of intense investigations due to their integration capabilities on silicon (Si) for next‐generation photovoltaics, integrated photonics, tunneling devices, and high‐performance gate all‐round III–V/Si NW transistors. In this review, recent progress on the growth, structural, optical and electrical properties of InGaAs NWs on Si substrate is highlighted. Particular focus is on a comparison between conventional catalyst‐assisted and catalyst‐free growth methods as well as self‐assembled versus site‐selectively grown NW arrays. It will be shown that catalyst‐free, high‐periodicity NW arrays with extremely high compositional uniformity are mandatory to allow un‐ambiguous structure–property correlation measurements. Here, interesting insights into the electronic/optical properties of wurtzite, zincblende and mixed crystal phases of InGaAs will be highlighted based on recent photoluminescence spectroscopy data. Finally, the InGaAs NW‐on‐Si system is also discussed in the realms of heterojunction properties, providing a promising system for steep‐slope tunneling field effect transistors in future low‐power post‐CMOS intergrated microelectronics and broad‐band photoabsorption and detec‐tion devices. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Ion beam implantation has been used not only to modify some properties of the bulk materials but also to construct waveguide structures in many optical substrates by accurate control the refractive index in selected regions. This paper reviews the recent development of ion beam implantations on fabrication of two-dimensional (2D) optical waveguides, i.e., in cases of channel or ridge configurations, in diverse insulating optical materials by giving detailed fabrication methods and research progress obtained to date. Future prospects of practical applications in photonics are also discussed briefly. Another aim of this work is to show the challenging task of this field, that is, to create practical 2D waveguide devices applicable in any existing insulating optical materials.  相似文献   

8.
We studied numerically the enhanced optical transmission (EOT) through periodic subwavelength circular‐sharp hole arrays in metallic films with different edge sharp distribution features of unit structures. Detailed studies indicate that the unit structure edge sharp distribution features strongly influence the surface plasmons (SPs). These results demonstrate that the number of edge sharp activated the localized surface plamons (LSP) resonance on the unit structure is changed by rotating the polarization of the incident light, leading to change the infrared transmittance of the array. Moreover, a compact plasmonic switch via periodic circular‐sharp hole arrays based on the dependence of SPs on unit structural edge sharp distributions is proposed. The finding provides a new idea for designing plasmonics devices, and expands the application range of metal micro‐nano structure in the field of optical communications and information processing.  相似文献   

9.
Controlling the polarization state, the transmission direction, the amplitude and the phase of light in a very limited space is essential for the development of on-chip photonics. Over the past decades, numerous sub-wavelength metallic microstructures have been proposed and fabricated to fulfill these demands. In this article, we review our efforts in achieving negative refractive index, controlling the polarization state, and tuning the amplitude of light with two-dimensional (2D) and three-dimensional (3D) microstructures. We designed an assembly of stacked metallic U-shaped resonators that allow achieving negative refraction for pure magnetic and electric responses respectively at the same frequency by selecting the polarization of incident light. Based on this, we tune the permittivity and permeability of the structure, and achieve negative refractive index. Further, by control the excitation and radiation of surface electric current on a number of 2D and 3D asymmetric metallic metastructures, we are able to control the polarization state of light. It is also demonstrated that with a stereostructured metal film, the whole metal surfaces can be used to construct either polarization-sensitive or polarization-insensitive prefect absorbers, with the advantage of efficient heat dissipation and electric conductivity. Our practice shows that metamaterials, including metasurface, indeed help to master light in nanoscale, and are promising in the development of new generation of photonics.  相似文献   

10.
作为最早发现的非线性光学现象之一,非线性频率转换经过几十年的发展,从原理到应用均已不断成熟。非线性频率转换过程中新的相位匹配原理被不断提出和实现。除此之外,随着集成光学、结构光子学及量子光学等领域的不断发展,非线性频率转换在各领域的研究和应用又重新焕发活力,并发挥着不可替代的作用。本篇综述围绕非线性频率转换主题,突出非线性频率转换的新原理、新平台与新应用研究,并以本团队研究成果为基础,介绍相关领域的研究进展,主要分为以下几个方面:非线性界面相位匹配新原理;结构光场非线性谐波调控;铌酸锂薄膜集成非线性光学新平台;单光子频率转换、光量子接口等新应用。  相似文献   

11.
Silicon-on-insulator (SOI) waveguide devices are emerging for the realization of optical signal processing systems for the last couple of years. The recent technological advancement in silicon photonics is the main driving force at the back of these devices. Using non-linear optical phenomenon in silicon wires and their compatibility with CMOS devices provide the stage for integrated photonic devices. All-optical signal processing devices are being investigated at present, but the chip-scale solution provided by the silicon photonics is the most promising. In this research we have investigated all-optical signal processing in a 10 mm long SOI waveguide by exploiting well established coupled wave equations. We consider single pulsed pump to analyze frequency shifting by four-wave-mixing (FWM). For the wavelengths 20?30 nm far from the pump, the gain overcomes nonlinear losses resulting in higher frequency conversion efficiency.  相似文献   

12.
A pulsed laser-assisted in liquid environment method has been developed successfully to synthesize size-tunable (5–12 nm) and different shapes (sphere, rod, rope) of nano II–VI semiconductor (cadmium sulfide). This method can be carried out in two ways; the first one is the top-down technique, which has been discussed in publications in the last few decades, and the other one is the bottom-up technique, which appears for the first time in this paper. X-ray diffraction, ultraviolet-visible spectroscopy, and transmission electron microscopy confirm that the nanoparticles are crystalline. The methods lead to the production of nanomaterials, which are important for photonics and biosensing applications. Both synthesized methods can be applied in all materials because of their ability to ablate almost all kinds of materials due to the ultrahigh energy density and control over the growth process by manipulating the process parameters such as intensity, wavelength, and so on.  相似文献   

13.
Dielectric metasurfaces are two‐dimensional structures composed of nano‐scatterers that manipulate the phase and polarization of optical waves with subwavelength spatial resolution, thus enabling ultra‐thin components for free‐space optics. While high performance devices with various functionalities, including some that are difficult to achieve using conventional optical setups have been shown, most demonstrated components have fixed parameters. Here, we demonstrate highly tunable dielectric metasurface devices based on subwavelength thick silicon nano‐posts encapsulated in a thin transparent elastic polymer. As proof of concept, we demonstrate a metasurface microlens operating at 915 nm, with focal distance tuning from 600 μm to 1400 μm (over 952 diopters change in optical power) through radial strain, while maintaining a diffraction limited focus and a focusing efficiency above 50%. The demonstrated tunable metasurface concept is highly versatile for developing ultra‐slim, multi‐functional and tunable optical devices with widespread applications ranging from consumer electronics to medical devices and optical communications.

  相似文献   


14.
This paper reviews a new field of direct femtosecond laser surface nano/microstructuring and its applications. Over the past few years, direct femtosecond laser surface processing has distinguished itself from other conventional laser ablation methods and become one of the best ways to create surface structures at nano‐ and micro‐scales on metals and semiconductors due to its flexibility, simplicity, and controllability in creating various types of nano/microstructures that are suitable for a wide range of applications. Significant advancements were made recently in applying this technique to altering optical properties of metals and semiconductors. As a result, highly absorptive metals and semiconductors were created, dubbed as the “black metals” and “black silicon”. Furthermore, various colors other than black have been created through structural coloring on metals. Direct femtosecond laser processing is also capable of producing novel materials with wetting properties ranging from superhydrophilic to superhydrophobic. In the extreme case, superwicking materials were created that can make liquids run vertically uphill against the gravity over an extended surface area. Though impressive scientific achievements have been made so far, direct femtosecond laser processing is still a young research field and many exciting findings are expected to emerge on its horizon.  相似文献   

15.
近些年来,回音壁模式光学谐振腔因其超高的品质因数、极小的模式体积,引起了各国学者的广泛关注,在民用以及军用器件方面都发挥了重要的作用.目前,对回音壁模式光学谐振腔的研究主要包括微波光子学,非线性光学以及惯性导航器件等.本文对当前各国学者在回音壁模式谐振腔方面的研究情况进行了汇总和总结,将从6个方面对其进行论述:特性参数、材料选择、光耦合、形状、应用以及展望.旨在给出回音壁模式光学谐振腔发展到今天取得的成果、遇到的挑战及今后的发展方向.  相似文献   

16.
17.
The current status of the research and development as well as the recent contributions in optical communications at INESC Porto is reviewed. This review includes all the work carried out in the last few years in optical fiber communications, namely the development of passive and active optical devices. Some of the passive structures that have been studied and developed are: add-drop multiplexers, multiplexer/demultiplexer based on Bragg grating technology, dispersion compensators, and optical cross-connects. Active photonic devices such as wavelength converters, fiber lasers, and fiber amplifiers have also been studied. New ideas are being continuously developed and tested.  相似文献   

18.
Optical polymers are a promising material of choice in the development of hybrid silicon photonics devices. Particularly, recent progress in electro‐optic (EO) active polymers has shown a strong Pockels effect. A ring resonator modulator is a vital building block for practical applications, such as signal processing, routing, and monitoring. However, the properties of the hybrid silicon and EO polymer ring modulators are still far from their theoretical limits. Here, we demonstrate a unique design of a hybrid ring resonator modulator simply located onto a silicon‐on‐insulator (SOI) substrate. Extra doping and etching of the SOI wafer is not required, even so we measured an in‐device electro‐optic coefficient r33 = 129 pm/V. The ring modulator exhibited a high sensitivity of the electrically tunable resonance, which enabled a 3 dB bandwidth of up to 18 GHz. The proposed technique will enable efficient mass‐production of the micro‐footprint modulators and promote the development of integrated silicon photonics.  相似文献   

19.
Metallic nanostructures have underpinned plasmonic-based advanced photonic devices in a broad range of research fields over the last decade including physics, engineering, material science and bioscience. The key to realizing functional plasmonic resonances that can manipulate light at the optical frequencies relies on the creation of conductive metallic structures at the nanoscale with low structural defects. Currently, most plasmonic nanostructures are fabricated either by electron beam lithography (EBL) or by focused ion beam (FIB) milling, which are expensive, complicated and time-consuming. In comparison, the direct laser writing (DLW) technique has demonstrated its high spatial resolution and cost-effectiveness in three-dimensional fabrication of micro/nanostructures. Furthermore, the recent breakthroughs in superresolution nanofabrication and parallel writing have significantly advanced the fabrication resolution and throughput of the DLW method and made it one of the promising future nanofabrication technologies with low-cost and scalability. In this review, we provide a comprehensive summary of the state-of-the-art DLW fabrication technology for nanometer scale metallic structures. The fabrication mechanisms, different material choices, fabrication capability, including resolution, conductivity and structure surface smoothness, as well as the characterization methods and achievable devices for different applications are presented. In particular, the development trends of the field and the perspectives for future opportunities and challenges are provided at the end of the review. It has been demonstrated that the quality of the metallic structures fabricated using the DLW method is excellent compared with other methods providing a new and enabling platform for functional nanophotonic device fabrication.  相似文献   

20.
Abstract

The current status of the research and development as well as the recent contributions in optical communications at INESC Porto is reviewed. This review includes all the work carried out in the last few years in optical fiber communications, namely the development of passive and active optical devices. Some of the passive structures that have been studied and developed are: add-drop multiplexers, multiplexer/demultiplexer based on Bragg grating technology, dispersion compensators, and optical cross-connects. Active photonic devices such as wavelength converters, fiber lasers, and fiber amplifiers have also been studied. New ideas are being continuously developed and tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号