首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As one of the greatest inventions in the 20 th century, ultrafast lasers have offered new opportunities in the areas of basic scientific research and industrial manufacturing. Optical modulators are of great importance in ultrafast lasers, which directly affect the output laser performances. Over the past decades, significant efforts have been made in the development of compact, controllable, repeatable, as well as integratable optical modulators(i.e., saturable absorbers). In this paper, we review the fundamentals of the most widely studied saturable absorbers, including semiconductor saturable absorber mirrors and low-dimensional nanomaterials. Then, different fabrication technologies for saturable absorbers and their ultrafast laser applications in a wide wavelength range are illustrated. Furthermore, challenges and perspectives for the future development of saturable absorbers are discussed and presented. The development of ultrafast lasers together with the continuous exploration of reliable saturable absorbers will open up new directions for the mass production of the nextgeneration optoelectronic devices.  相似文献   

2.
冯秋燕  姚佰承  周金浩  夏汉定  范孟秋  张黎  吴宇  饶云江 《物理学报》2015,64(18):184214-184214
基于石墨烯的光学非线性特性和器件研究正在成为新一代微纳光子器件的一个重要方向. 采用峰值功率为kW量级的飞秒脉冲抽运和P型掺杂石墨烯薄膜包裹的微光纤所构成的复合波导结构, 在1550 nm波段成功激发并观察到级联四波混频现象. 实验 结果表明, 这种P型掺杂石墨烯包裹的微光纤复合波导具有非线性系数高、结构紧凑, 可承受高功率和超快响应的特点, 对基于该结构的级联四波混频特性的研究在基于超快光学的多波长光源、光参量放大以及全光再生等领域具有参考价值和应用意义  相似文献   

3.
Mid‐infrared ultrafast lasers have emerged as a promising platform for both science and industry because of their inherent high raw power and eye‐safe spectrum. 2D nanostructures such as graphene have emerged as promising photonic materials for laser mode‐locking to generate ultrashort pulses. However, there are still many unanswered questions about graphene's key advantages to be practical devices, especially over the matured semiconductor saturable absorber mirror (SESAM). In this work, we conducted systematic comparisons on the nonlinear optical properties of graphene and that of a commercial SESAM at 2 μm wavelength. Our results showed that graphene has significant advantages over the commercial SESAM, exhibiting ∼28% less absorptive cross‐section ratio of excited‐state to ground‐state and ∼50 times faster relaxation time. This implies that graphene can be exploited as a better mode‐locker than the current commercial SESAM for high power, high repetition rate and ultrafast mid‐infrared laser sources.  相似文献   

4.
A review about second harmonic generation using edge emitting diode lasers and nonlinear crystals to obtain laser radiation in the blue‐green spectral range is presented. Therefore, pump laser radiation with high brightness and narrow bandwidth is necessary. Thus, this review gives an overview of the advances made with distributed feedback and Bragg reflector lasers, tapered lasers and amplifiers as well as external cavity diode lasers and master oscillator power amplifier schemes to achieve high brilliance emission. Since periodically poled materials have enabled high second harmonic conversion efficiencies with low and moderate pump powers, the review is focused on frequency doubling using those materials. The most commonly used materials, their properties and limitations are discussed briefly. Single pass and resonant SHG setups with waveguide and bulk nonlinear crystals are discussed and an emphasis on building compact and integrated devices is made.  相似文献   

5.
6.
半导体激光直接倍频的488nm蓝光激光器   总被引:4,自引:0,他引:4  
利用波导型准相位匹配周期极化反转铌酸锂(PPLN)晶体直接倍频波长为976 nm的连续半导体激光二极管,在最佳晶体工作温度(28℃)下,获得了波长为488 nm的连续蓝光输出,最大输出功率大于20 mW。所用的晶体尺寸为8 mm×1.4 mm×1 mm,波导截面为4.5μm×3.5μm,极化周期为5.2μm。研究了波导型周期极化反转铌酸锂晶体的倍频效率与温度的关系,与普通的周期极化反转铌酸锂相比,倍频效率与温度关系的敏感度较低。同时,由于晶体可以在室温下工作,简化了加温与温控部件,提高了整机的工作效率。在此实验的基础上,制成了一台小型的全固态488 nm连续蓝光激光器。  相似文献   

7.
8.
This review summarizes the recent progress in the study of ultrafast nonthermal effects of light on magnetic materials. It is demonstrated that due to opto‐magnetic phenomena an intense 100 fs circularly polarized laser pulse acts on the spins similar to an equivalently short effective magnetic field pulse up to 1 T. The review shows that using such opto‐magnetic phenomena one may selectively excite different modes of magnetic resonance, realize quantum control of magnons, trigger magnetic phase transitions and switch spins on a subpicosecond time‐scale. All these findings open new insights into the understanding of ultrafast magnetic excitation and, considering recent progress in the development of compact ultrafast lasers, may provide new prospects for applications of ultrafast opto‐magnetic phenomena in magnetic storage and information processing technology.  相似文献   

9.
Direct‐write optical waveguide device fabrication is probably the most widely studied application of femtosecond laser micromachining in transparent dielectrics at the present time. Devices such as buried waveguides, power splitters, couplers, gratings, optical amplifiers and laser oscillators have all been demonstrated. This paper reviews the application of the femtosecond laser direct‐write technique to the fabrication of active waveguide devices in bulk glass materials.  相似文献   

10.
杨超  顾澄琳  刘洋  王超  李江  李文雪 《物理学报》2018,67(9):94206-094206
近年来,双重复频率锁模激光器在诸如双光梳光谱和异步光学采样等应用领域吸引了广泛关注.基于单一激光腔的双梳系统能大大降低成本,简化系统结构,且性能优异.双重复频率锁模激光器为发展紧凑型和实用型双梳装置开辟了道路.本文报道了一种可用作双光梳光谱系统光源的双重复频率锁模Yb:YAG陶瓷激光器.该激光器基于半导体可饱和吸收镜锁模技术,采用双通道抽运结构,利用新型非水基流延成型制备的Yb:YAG透明陶瓷,在单一的五镜腔中,当吸收抽运光功率为5.6 W时,实现了自启动、稳定运转的双重复频率锁模脉冲Pulse1和Pulse2,其重复频率分别为448.918和448.923 MHz,重复频率差为5 kHz.在吸收抽运功率为7 W时,得到最大的总平均输出功率170 mW,其中Pulse1和Pulse2的功率分别为89和81 mW,相应的光谱宽度分别为1和1.16 nm.性能相似的双重复频率脉冲彼此间保持了良好的相干性,实验结果证明了双通道抽运在双重复频率锁模激光器应用中的可行性,此种新型双重复频率激光器在双光梳光谱和测距等领域具有较好的应用潜力.  相似文献   

11.
As a member of the 2D group IV monochalcogenides (MX; M = Sn, Ge; X = S, Se), SnS has attracted great interest due to its outstanding optical, electrical, and optoelectronic properties. Especially, SnS nanosheets material have a large absorption coefficient and high photoelectric conversion efficiency, it can be potentially used in optical modulators, saturable absorbers, solar cells, supercapacitors, and other optical devices. However, the nonlinear optical properties of SnS nanosheets and their applications in ultrafast photonics are seldom studied. In this paper, the nonlinear optical properties of SnS nanosheets have been characterized through a dual‐balance detection system, whose modulation depth is 5.8%. More importantly, 105th harmonic soliton molecule based on SnS saturable absorbers has been realized for the first time to the authors’ knowledge. A compact mode‐locked fiber laser with a pulse duration of 1.02 ps and a repetition rate of 459 MHz is realized near 1.5 µm. It is demonstrated that SnS nanosheets have outstanding nonlinear properties and play an extremely important role in the field of ultrafast photonics.  相似文献   

12.
We describe recent progress in photonic crystal nanocavity lasers with an emphasis on our recent results on ultrafast pulse generation. These lasers produce pulses on the picosecond scale, corresponding to only hundreds of optical cycles. We describe laser dynamics in optically pumped single cavities and in coupled cavity arrays, at low and room temperature. Such ultrafast, efficient, and compact lasers show great promise for applications in high‐speed communications, information processing, and on‐chip optical interconnects.  相似文献   

13.
We report on, to our knowledge the first time, the channel waveguide formation in Nd:YLiF4 laser crystal produced by 6 MeV carbon ion implantation. The guided modes are observed by using an end‐face arrangement. We construct the two‐dimensional (2D) refractive index profile of the channel waveguide cross section, which is based on the related planar waveguide index distribution as well as the rectangular shape of the waveguide cross sections. The modal intensity distribution is numerically calculated by using the beam propagation method according to the reconstructed index profile, which shows a reasonable agreement with the experimental result. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
This paper reviews the quasi‐phase‐matched (QPM) waveguide nonlinear‐optic device technologies for generation of quantum‐entangled twin photons indispensable for quantum‐information techniques. After a brief introduction to the concept of entanglement, quantum theory analysis of twin‐photon generation (TPG) is outlined to clarify the properties of twin photons. Then, methods for entangled‐photon generation are discussed. Practical design and theoretical performances of LiNbO3 waveguide QPM TPG devices, as well as the fabrication techniques, are described. Finally, experimental demonstrations of polarization‐entangled twin‐photon generation by waveguide Type‐I and Type‐II QPM TPG devices are presented.  相似文献   

15.
硫化锌(ZnS)晶体是重要的宽光谱红外窗口材料,高深径比纳米孔的超快激光制造技术为中红外波导傅立叶变换光谱仪等光子器件的实现提供了重要的技术途径.本文采用中心波长为1030nm、重复频率为100kHz、脉冲宽度为223 fs-20ps可调的Yb:KGW激光光源,用石英锥镜产生高斯-贝塞尔光束,并用4f系统构建了40倍缩...  相似文献   

16.
Infrared emission from 980‐nm single‐mode high power diode lasers is recorded and analyzed in the wavelength range from 0.8 to 8.0 μm. A pronounced short‐wavelength infrared (SWIR) emission band with a maximum at 1.3 μm originates from defect states located in the waveguide of the devices. The SWIR intensity is a measure of the non‐equilibrium carrier concentration in the waveguide, allowing for a non‐destructive waveguide mapping in spatially resolved detection schemes. The potential of this approach is demonstrated by measuring spatially resolved profiles of SWIR emission and correlating them with mid‐wavelength infrared (MWIR) thermal emission along the cavity of devices undergoing repeated catastrophic optical damage. The enhancement of SWIR emission in the damaged parts of the cavity is due to a locally enhanced carrier density in the waveguide and allows for an analysis of the spatial damage patterns. The figure shows a side view of a diode laser during catastrophic degradation as recorded by a thermocamera within 5 successive current pulses. The geometry of the device is given in grayscale. The position of the laser chip is indicated by the dotted line. The thermal signatures of the internal degradation of the diode laser are overlaid in color. The bi‐directional spread of the damage along the laser cavity is clearly visible.  相似文献   

17.
The present article reviews the fundamental physical principles essential to an understanding of waveguide gas and liquid lasers, and the current technological state of these devices. At the present time, waveguide laser transitions span the visible through submillimeter regions of the wavelength spectrum. The introduction discusses the many applications of waveguide lasers and the wide variety of laser configurations that are possible. Section 1 summarizes the properties of modes in hollow dielectric waveguides of circular, rectangular, and planar cross section. Section 2 considers various approaches to optical feedback including internal and external mirror Fabry-Perot type resonators, hollow waveguide distributed feedback structures, and ring-resonant configurations. Section 3 discusses those aspects of molecular kinetic and laser theory pertinent to the design and optimization of waveguide gas lasers such as the scaling laws for discharge-excited gas lasers, molecular models useful in maximizing the oscillation bandwidth, the effects of gas flow rate, and the physics of optically-pumped far-infrared lasers. Finally, a review of the waveguide gas and liquid lasers reported to date is given in Section 4.  相似文献   

18.
19.
为了降低功耗、实现超快速响应,设计了一种基于双矩形腔边耦合等离子体波导系统,并研究了其等离子体诱导透明效应.采用光学Kerr效应超快调控石墨烯-Ag复合材料波导结构,实现1 ps量级的超快响应时间.动态调控等离子体波导的传输相移,当泵浦光强为5.83 MW/cm^2时,等离子体诱导透明系统能够实现透射光谱π相移,这是因为基于石墨烯-Ag复合材料结构等离子体波导具有大的等效光学Kerr非线性系数,表面等离子体激元局域光场和等离子体诱导透明效应慢光对光学Kerr效应产生了协同增强作用,大大降低了系统获得透射光谱π相移的泵浦光强.等离子体诱导透明效应透明窗口的可调谐带宽为40 nm,系统的群延时控制在0.15 ps到0.85 ps之间,并且光波通过间接耦合或者相位耦合机制实现了等离子体诱导透明效应相移倍增效应.耦合模式理论计算结果很好地吻合了时域有限差分法仿真模拟结果,研究结果对于低功耗、超快速非线性响应和紧凑型光子器件的设计和制作具有一定的参考意义.  相似文献   

20.
The analogy between quantum mechanics and electromagnetism is used to design an optical waveguide with the same transmission and traversal time as a quantum dot. Two different quantum dot geometries are considered for two typical applications: ultrafast devices and computing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号