首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three ruthenium(II) polypyridyl complexes [Ru(dmb)2(dadppz)]2+ 1, [Ru(bpy)2(dadppz)]2+ 2 and [Ru(phen)2(dadppz)]2+ 3 were synthesized and characterized by elemental analysis, ES-MS, 1H NMR and 13C NMR. Their DNA-binding behaviors were investigated by absorption titration, fluorescence spectroscopy and viscosity measurements. Cytotoxicity in vitro, apoptosis, cell cycle arrest, cellular uptake and reactive oxygen species assays were performed. The complexes were found to show moderate DNA-binding affinities and high cytotoxicities toward A549, BEL-7402, MG-63 and SKBR-3 cell lines. These complexes can effectively induce apoptosis of BEL-7402. In cell cycle assays, the complexes induced S-phase arrest on BEL-7402 cells and G0/G1-phase arrest on SKBR-3 cells. The DNA-binding experiments showed that the three complexes interact with CT-DNA through an intercalative mode.  相似文献   

2.
[Cu(bpea)Cl]ClO4 (1) and a new copper(II) complex [Cu(bpma)(Ph-COO)(H2O)]ClO4 (2) [bpea?=?N,N-bis(2-pyridylmethyl)ethylamine; bpma?=?N,N-bis(2-pyridylmethyl)methylamine] have been synthesized. Complex 2 was crystallized in monoclinic space group P21/c with unit cell parameters a ?=?16.460(6)?Å, b ?=?11.222(4)?Å, c?=?12.522(5)?Å, and β?=?97.985(6)°. Interactions of the complexes with calf thymus DNA (CT-DNA) have been investigated by UV absorption, fluorescence, and cyclic voltammetry; thus, modes of CT-DNA binding for the complexes have been proposed. Furthermore, DNA cleavage activities by the complexes were performed in the absence of any external agents. The influence of complex concentration or reaction time on the DNA cleavage was studied.  相似文献   

3.
Two water‐soluble 6‐(pyrazin‐2‐yl)‐1,3,5‐triazine‐2,4‐diamino (pzta)‐based Cu(II) complexes, namely [Cu(l ‐Val)(pzta)(H2O)]ClO4 ( 1 ) and [Cu(l ‐Thr)(pzta)(H2O)]ClO4 ( 2 ) (l ‐Val: l ‐valinate; l ‐Thr: l ‐threoninate), were synthesized and characterized using elemental analyses, molar conductance measurements, spectroscopic methods and single‐crystal X‐ray diffraction. The results indicated that the molecular structures of the complexes are five‐coordinated and show a distorted square‐pyramidal geometry, in which the central copper ions are coordinated to N,N atoms of pzta and N,O atoms of amino acids. The interactions of the complexes with DNA were investigated using electronic absorption, competitive fluorescence titration, circular dichroism and viscosity measurements. These studies confirmed that the complexes bind to DNA through a groove binding mode with certain affinities (Kb = 4.71 × 103 and 1.98 × 103 M?1 for 1 and 2 , respectively). The human serum albumin (HSA) binding properties of the complexes were also evaluated using fluorescence and synchronous fluorescence spectroscopies, indicating that the complexes could quench the intrinsic fluorescence of HSA in a static quenching process. The relevant thermodynamic parameters revealed the involvement of van der Waals forces and hydrogen bonds in the formation of complex–HSA systems. Finally, molecular docking technology was also used to further verify the interactions of the complexes with DNA/HSA.  相似文献   

4.
Four new substituted amino acid ligands, N-(3-hydroxybenzyl)-glycine acid (HL1), N-(3-hydroxybenzyl)-alanine acid (HL2), N-(3-hydroxybenzyl)-phenylalanine acid (HL3), and N-(3-hydroxybenzyl)-leucine acid (HL4), were synthesized and characterized on the basis of 1H NMR, IR, ESI-MS, and elemental analyses. The crystal structures of their copper(II) complexes [Cu(L1)2]·2H2O (1), [Cu(L2)2(H2O)] (2), [Cu(L3)2(CH3OH)] (3), and [Cu(L4)2(H2O)]·H2O (4) were determined by X-ray diffraction analysis. The ligands coordinate with copper(II) through secondary amine and carboxylate in all complexes. In 2, 3, and 4, additional water or methanol coordinates, completing a distorted tetragonal pyramidal coordination geometry around copper. Fluorescence titration spectra, electronic absorption titration spectra, and EB displacement indicate that all the complexes bind to CT-DNA. Intrinsic binding constants of the copper(II) complexes with CT-DNA are 1.32?×?106?M?1, 4.32?×?105?M?1, 5.00?×?105?M?1, and 5.70?×?104?M?1 for 1, 2, 3, and 4, respectively. Antioxidant activities of the compounds have been investigated by spectrophotometric measurements. The results show that the Cu(II) complexes have similar superoxide dismutase activity to that of native Cu, Zn-SOD.  相似文献   

5.
One-dimensional (1-D) coordination polymer and mononuclear copper(II) complexes, ([Cu(nphen)(asn)]ClO4)n (1) and [Cu(nphen)(gln)(H2O)]ClO4·H2O (2) (nphen = 5-nitro-110-phenanthroline, asn = asparagine, gln = glutamine), have been synthesized and characterized by IR spectroscopy, ESI-MS, CHN analysis, and single-crystal X-ray diffraction. These binary and ternary complexes of copper(II) with nphen, asn, and gln have been investigated using potentiometric methods in 0.1 M KCl aqueous ionic media at 298.2 K. The protonation constants of the ligands and the stability constants of 1 and 2 have been calculated from the potentiometric data using the “BEST” software package. The potentiometric results have been analyzed using the “SPE” software package, and the distribution curves for the copper-containing species have been determined for the ternary systems. The CT-DNA-binding properties of these complexes have been investigated by thermal denaturation measurements and both absorption and emission spectroscopy. Further, the interaction of these complexes with bovine serum albumin (BSA) and human serum albumin (HSA) has been investigated using absorption and emission spectroscopy. The thermodynamic parameters, free energy change (ΔG), enthalpy change (ΔH), and entropy change (ΔS) were calculated by the van’t Hoff equation and discussed. The distances between the serum albumins and 1 and 2 have been obtained according to fluorescence resonance energy transfer (FRET). Conformational changes of serum albumins have been observed from synchronous fluorescence technique. The antimicrobial activity of the complexes has also been tested on some bacteria. The effect of different amino acids on the copper(II) complexes are discussed.  相似文献   

6.
An aminonaphthoquinone ligand, L, and its metal complexes of general formula [MLCl2] {M = Co(II), Ni(II), Cu(II) and Zn(II)} have been synthesized and characterized by analytical and spectral techniques. Tetrahedral geometry has been assigned to Ni(II) and Zn(II) complexes and square planar geometry to Co(II) and Cu(II) complexes on the basis of electronic spectral and magnetic susceptibility data. The binding of complexes with bovine serum albumin (BSA) is relatively stronger than that of free ligand and alters the conformation of the protein molecule. Interaction of these complexes with CT-DNA has been investigated using UV-Vis and fluorescence quenching experiments, which show that the complexes bind strongly to DNA through intercalative mode of binding (Kapp 105 M?1). Molecular docking studies reiterate the mode of binding of these compounds with DNA, proposed by spectral studies. The ligand and its complexes cleave plasmid DNA pUC18 to nicked (Form II) and linear (Form III) forms in the presence of H2O2 oxidant. The in vitro cytotoxicity screening shows that Cu(II) complex is more potent against MCF-7 cells and Zn(II) complex exhibits marked cytotoxicity against A-549 cells equal to that of cisplatin. Cell imaging studies suggested apoptosis mode of cell death in these two chosen cell lines.  相似文献   

7.
Mononuclear and trinuclear zinc(II) complexes (1 and 2) with tridentate NNO Schiff-base ligands (HL1?=?N-2-pyridiylmethylidene-4-chloro-2-hydroxy-phenylamine, HL2?=?N-2-pyridiylmethylidene-2-hydroxy-5-chloro-phenylamine) have been synthesized and characterized by single-crystal X-ray diffraction and elemental analysis. The binding properties of zinc(II) complexes with calf thymus DNA (CT-DNA) and HSA were investigated by UV–visible, fluorescence, and circular dichroism spectra. The zinc(II) complexes bind significantly to CT-DNA by intercalation and bind to protein HSA through a static quenching mechanism. The in vitro cytotoxicity of the complexes on human tumor cells lines was assessed by 3-(4,5-dimathylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide, Hoechst 33258 staining experiments.  相似文献   

8.
l-Tryptophan derived Schiff base ligand and its complexes of the type, [ML(H2O)2]·H2O [M?=?Co(II), Ni(II), Zn(II)] and [CuL] have been synthesized and characterized on the basis of results obtained from elemental analysis, conductivity measurements, ESI-Mass spectral studies, FT-IR, 1H and 13C NMR, UV–Vis spectroscopy and magnetic moment data. The synthesized complexes were subjected to thermogravimetric analysis to study their decomposition pattern and stability. The fluorescence and viscosity measurements reveal that complexes have significant CT-DNA binding. However, upon comparing the DNA binding analyses, Cu(II) complex exhibited significant binding affinity.  相似文献   

9.
NOO-type tridentate Schiff base, N-salicylidene-2-aminobenzoic acid, (H2L), and its ternary Cu (II) complex containing H2L Schiff base and 4,7-dimethyl-1,10-phenanthroline (4,7-dmphen), [Cu(4,7-dmphen)(H2L)]27H2O, have been synthesized and characterized by CHN analysis, ESI-MS, FTIR, and single-crystal X-ray diffraction techniques. The interaction of alone H2L Schiff base ligand and ternary Cu (II) complex with biomacramolecules {calf thymus DNA (CT-DNA) and bovine serum albumin (BSA)} has been investigated by electronic absorption and fluorescence spectroscopy. The experimental results indicate that H2L Schiff base ligand and ternary Cu (II) complex bind to CT-DNA by means of a moderate intercalation mode. Furthermore, the fluorescence quenching mechanism between H2L Schiff base ligand and ternary Cu (II) complex with BSA possesses a static quenching process. Radical scavenging activity of H2L Schiff base ligand and ternary Cu (II) complex was measured in terms of EC50, using the DPPH and H2O2 methods. Biomacromolecule interactions and scavenging activity studies revealed that ternary Cu (II) complex yielded better results than H2L Schiff base ligand alone.  相似文献   

10.
Four mononuclear copper(II) and zinc(II) complexes were synthesized by the reaction of copper and zinc salts with 3,4-dichlorophenylactic acid, 2-bromophenylactic acid, biphenylacetic acid (O-donor ligand) and bipyridine (N-donor ligands) having the general formulae [(L)2Cu(bp)(H2O)] ( 1 ), [(BpA)2Cu(bp)] ( 2 ), [(L)2Zn(bp)(H2O)] ( 3 ) and [(L*)2Zn(bp)] ( 4 ) (L = 3,4-dichlorophenylacetate, L* = 2-bromophenylacetate bp = bipyridine, and BpA = biphenylacetate). Structures of all compounds were characterized through FT-IR spectroscopy and X-ray diffraction analysis. FT-IR spectra of all complexes confirmed the binding mode of Cu-O and Zn-O. XRD data revealed that complexes 1 – 3 exhibited distorted octahedral arrangement, whereas complex 4 has a distorted tetrahedral environment. Micellization behavior was examined with anionic surfactant (SDS) by conductance measurement as well as absorption spectral analysis. DNA binding study was assessed through viscosity measurement and UV/Vis spectrophotometry. DPPH free radical scavenging assay was measured by UV/Vis spectrophotometry. The results showed nice biological potential of all the complexes.  相似文献   

11.
Abstract

Interactions of copper(II) complexes which contain S-alkyl derivatives of thiosalicylic acid (alkyl?=?methyl, ethyl, propyl and butyl; aryl?=?benzyl), marked as 15, with guanosine-5′-monophosphate (5′-GMP) and calf thymus DNA (CT-DNA) were studied. Kinetics of substitution reactions of 15 with 5′-GMP and CT-DNA were investigated under pseudo-first-order conditions at 310 K and pH = 7.2 in 25?mM Hepes buffer using stopped-flow method. All complexes have high affinity toward studied bio-molecules. Additionally, interactions with CT-DNA were followed by absorption spectroscopy and fluorescence quenching measurements. The results indicate that complexes bind to DNA exhibiting high binding constants (Kb = 104 M?1). During the examination of competitive reactions with ethidium bromide (EB), results showed that complexes can replace EB-bound DNA. In addition, a new crystal structure of the binuclear Cu(II) complex with S-substituted thiosalicylate derivative has been reported. In the present series of Cu(II) complexes the crystal structure is the first example of a complex comprising an S-aryl derivative of thiosalicylate ligand. Through comparative study of structural properties of six molecules from four crystal structures we examined the structural variations, potentially important for biological activity of these complexes.  相似文献   

12.
Three new copper(II) complexes of N-benzyl di(pyridylmethyl)amine (phdpa) were synthesized and characterized by spectroscopic methods. The interaction between CT-DNA and the complexes was studied by UV and fluorescence titration methods. It was found that the complex [(phdpa)Cu(H(2)O)Ac)](Ac), with the non-planar aromatic heterocyclic ring ligand (phdpa), showed good anticancer properties and could cause the fragmentation of the nucleus, although its interaction with CT-DNA was weaker than that of 1,10-phenanthroline (phen)-based copper(II) complexes. The anticancer activities of copper(II) complexes with phdpa and phen based ligands are correlated to their binding constants with DNA, but phen-based copper(II) complexes did not cause the nucleus fragmentation of HeLa cells. [(phdpa)Cu(H(2)O)Ac)](Ac) can noticeably decrease the oxygen content of a culture solution and of HeLa cells, which make it a new nucleus and oxygen related anticancer copper(II) complex. Information obtained here would be helpful in the design of new antitumor complexes in oxidative therapy.  相似文献   

13.
DNA and BSA binding properties of mononuclear Co (II) and Cu (II) complexes containing letrozole [M(Le)4Cl2]·(H2O)](Le=[4,4-(1H-1,2,4-triazol-1-ylmethylene)bisbenzonitrile] have been investigated under physiological conditions. The interaction ability of the two complexes with native calf thymus DNA(CT-DNA) has been monitored as a function of the metal complex-DNA molar ratio by UV–Vis absorption spectrophotometry, fluorescence spectroscopy, circular dichroism(CD) and thermal denaturation studies. The intrinsic binding constants, Kb, of complexes 1 and 2 with CT-DNA, obtained from UV–Vis absorption studies, were 3.15 ± 0.02 × 104 and 4.37 ± 0.02 × 104 M?1, respectively. The addition of the complexes to CT-DNA (1:2) leads to an increase in the melting temperature of DNA up to around 4 °C, which has revealed that complexes could interact with DNA through intercalation mode. Fluorimetric studies have been performed using methylene blue (MB) as a fluorescence probe and competitive studies have shown the ability of the complexes to displace the DNA-bound MB, suggesting competition with MB. To explore the potential biological value of the complexes, the binding interaction between Co (II) and Cu (II) complexes and bovine serum albumin (BSA) has also been studied by fluorescence spectroscopy. The results indicate that the reaction between the complexes and BSA is a static quenching procedure. The site marker displacement experiment has suggested the location of the complexes binding to BSA at Sudlow’s site I in subdomain IIA. Finally, MTT assay studies have shown that the bioactive complexes exert significantly high selective dose-dependent cytotoxicity against a panel of cancer cell lines including MCF-7, JURKAT, SKOV3 and U87.  相似文献   

14.
Binary and ternary complexes of copper(II) involving N,N,N′,N′-tetramethylethylene-diamine (Me4en) and various biologically relevant ligands containing different functional groups are investigated. The ligands (L) used are dicarboxylic acids, amino acids, peptides and DNA unit constituents. The ternary complexes of amino acids, dicarboxylic acids or peptides are formed by simultaneous reactions. The results showed the formation of Cu(Me4en)(L) complexes with amino acids and dicarboxylic acids. The effect of chelate ring size of the dicarboxylic acid complexes on their stability constants was examined. Peptides form both Cu(Me4en)(L) complexes and the corresponding deprotonated amide species Cu(Me4en)(LH−1). The ternary complexes of copper(II) with (Me4en) and DNA are formed in a stepwise process, whereby binding of copper(II) to (Me4en) is followed by ligation of the DNA components. DNA constituents form both 1:1 and 1:2 complexes with Cu(Me4en)2+. The concentration distribution of the complexes in solution was evaluated. [Cu(Me4en)(CBDCA)] and [Cu(Me4en)(malonate)] are isolated and characterized by elemental analysis and infrared measurements.  相似文献   

15.
Three copper(II) complexes of the polydentate N‐donor ligand [4‐(4,6‐bis(1H‐pyrazol‐1‐yl)‐1,3,5‐triazin‐2‐yl)morpholine] (L) with chlorides, nitrates, and perchlorates as anions, namely, [CuCl2(L)] · 0.5(MeCN) ( 1 ), [Cu(NO3)2(H2O)(L)] · (MeCN) ( 2 ), and [Cu(L)2](ClO4)2 · (MeCN) ( 3 ) were synthesized and structurally characterized by IR, elemental analysis and X‐ray crystallographic analysis. In these complexes, the L ligand binds the copper(II) cation in the tridentate N3 form. The coordination arrangement around the central copper(II) atom is distorted square‐pyramidal in 1 but it is distorted octahedral in 2 and 3 . The interesting noncovalent interactions such as hydrogen bonds, π–π stacking, and anion–π interactions present in the solid‐state structures are discussed. The crystal results reveal that the counteranions play important roles in determining the diverse structures of these complexes. Moreover, the PXRD, TG, DRS, and fluorescence properties of compounds 1 – 3 were investigated.  相似文献   

16.
Abstract

The synthesis of the new ligand 1,8-bis(quinolyloxy)-3,6-dithiaoctane (1) and the corresponding Cu(II), Cu(I) and Co(II) complexes is reported. The crystal and molecular structure of the copper(II) complex, [Cu(1)](ClO4)2.3H2O, has been determined by X-ray diffraction methods. The complex crystallizes in the orthorhombic space group Fddd, with cell data Z = 16, a = 20.326(2), b = 20.879(3) and c = 28.308(4)Å. The structure consists of discrete [Cu(1)]?2+ cations separated by (structurally disordered) perchlorate anions and three lattice water molecules per cation. The coordination geometry about the copper atom is pseudo-octahedral with the quinoline nitrogen and thioether sulfur atoms at the equatorial positions and the ether oxygen atoms at the axial positions. 1H NMR line-broadening experiments indicate that electron-transfer self-exchange reactions between the copper(I) and copper(II) complexes of (1) is immeasurably slow on the NMR time-scale. The coordination chemistry of (1) is compared with its oxygen analogue, 1,8-bis(quinolyloxy)-3,6-dioxaoctane.  相似文献   

17.
The dinuclear copper(II) complex, [Cu2(phen)2(4-aminobenzoate)2(H2O)2](NO3)2·2(4-aminobenzoic acid)·3H2O (phen = 1,10-phenanthroline), has been synthesized and structurally characterized by elemental analyses, IR, EPR, UV-visible and single-crystal X-ray crystallography. The complex crystallized in a monoclinic system with space group C2/c, a?=?26.0022(10) Å, b?=?10.2524(4) Å, c?=?20.9983(7) Å, α?=?90°, β?=?106.9550(10)° and γ?=?90°. The Cu(II) ion adopts a distorted square-pyramidal geometry formed by two N atoms from the phen ligand and two O atoms of the two 4-aminobenzoic acid ligands and one water O atom. The Cu…Cu separation is 3.0570(5) Å. A twofold axis passes through the midpoint of the Cu-Cu vector. The complex has intraligand (π–π*) fluorescence properties. The binding of this dinuclear copper(II) complex with calf thymus DNA (CT-DNA) was investigated by UV-vis absorption, fluorescence spectroscopic, cyclic voltammetric and viscosity techniques. Also, the cleavage of pBR322 DNA with dinuclear copper(II) complex was studied using gel electrophoresis method. The exhibited potent cytotoxic effects against human cell line (HepG2) and it was found to have good antimicrobial activities. The primary coordination sphere of dinuclear copper(II) complex is optimized, structural parameters are calculated and energy gaps of frontier orbital (HOMO-LUMO) have been calculated with B3LYP/6-31G/LANL2DZ level of theory in the gaseous phase. The calculated geometric and spectral results reproduced the experimental data with well agreement. Theoretical calculated molecular orbitals (HOMO-LUMO) and their energies have been calculated that suggest charge transfer occurs within the complex.  相似文献   

18.
A new ligand, 2-oxo-1,2-dihydroquinoline-3-carbaldehyde semicarbazone (OQsc-H) (1);, its N(4)-phenyl derivative (OQsc-Ph) (2); and their corresponding copper(II) complexes [CuCl(2)(OQsc-H)]·H(2)O·CH(3)OH (3), [CuCl(2)(OQsc-Ph)(H(2)O)]·CH(3)OH (4), and [CuNO(3)(OQsc-Ph)(H(2)O)]NO(3)·H(2)O·C(2)H(5)OH (5) have been synthesized and characterized by structural, analytical, and spectral methods, in order to investigate the influence of N(4)-phenyl substitution on structure and pharmacological properties. In all of the complexes, the ligands coordinated to the Cu(II) ion in a neutral fashion via ONO donor atoms. The single-crystal X-ray structures of neutral complex (3) and cationic complex (5) exhibit a slightly distorted square-pyramidal structure, while neutral complex (4) revealed an octahedral structure. The interaction of the compounds with calf thymus DNA (CT-DNA) has been explored by absorption and emission titration methods, which revealed that compounds 1-5 could interact with CT-DNA through intercalation. A gel electrophoresis pictogram demonstrated the ability of the complexes (3-5) to cleave the pBR322 plasmid DNA through a hydrolytic process. The interactions of the compounds with bovine serum albumin (BSA) were also investigated using UV-visible, fluorescence, and synchronous fluorescence spectroscopic methods. The results indicated that all of the compounds could quench the intrinsic fluorescence of BSA in a static quenching process. Investigations of antioxidative properties showed that all of the compounds have strong radical scavenging potencies against hydroxyl radicals, 2,2-diphenyl-1-picrylhydrazyl radicals, nitric oxide, and superoxide anion radicals. Further, the cytotoxic effect of the compounds examined on cancerous cell lines such as human cervical cancer cells (HeLa), human laryngeal epithelial carcinoma cells (HEp-2), human liver carcinoma cells (Hep G2), human skin cancer cells (A431), and noncancerous NIH 3T3 mouse embryonic fibroblasts cell lines showed that all three complexes exhibited substantial cytotoxic activity. Further, all of the pharmacological investigations support the fact that there exists a strong influence of N(4)-phenyl substitution in semicarbazone.  相似文献   

19.
Two Cu(II) complexes based on curcumin, namely CuL 2 1 [HL1 = 1,7-bis[4-(2-oxymethylenepyridine)-3-methoxyl]phenyl-1,6-heptadiene-3,5-diketone] and CuL 2 2 [HL2 = 1,7-bis[4-(3-oxymethylene-2-chlorothiophene)-3-methoxyl] phenyl-1,6-heptadiene-3,5-diketone], have been synthesized and characterized by physico-chemical and spectroscopic methods. The interactions of calf thymus DNA (CT-DNA) with both complexes have been investigated by UV–Vis absorption, fluorescence and viscosity titration methods. Both complexes are found to interact with CT-DNA by intercalative binding modes. Evaluation of the cytotoxicities of the complexes against three human tumor cells showed that they have potent cytotoxicities against all three cell lines.  相似文献   

20.
Four unsymmetrical oxovanadium phenanthroimidazole complexes, [VO(hntdtsc)(NPIP)] (1), [VO(hntdtsc)(CPIP)] (2), [VO(hntdtsc)(MEPIP)] (3) and [VO(hntdtsc)(HPIP)] (4) (hntdtsc = 2-hydroxy-1-naphthaldehyde thiosemicarbazone, NPIP = 2-(4-nitrophenyl)-imidazo[4,5-f]1,10-phenanthroline, CPIP = 2-(4-chlorphenyl)-imidazo[4,5-f]1,10-phenanthroline), MEPIP = 2-(4-methylphenyl)-imidazo[4,5-f]1,10-phenanthroline), HPIP = 2-(4-hydroxylphenyl)-imidazo[4,5-f] 1,10-phenanthroline), have been synthesized and characterized. Their DNA binding and antitumor activities were determined by biochemical methods. All four oxovanadium complexes can bind with CT-DNA by an intercalation model and can also cleave supercoiled plasmid DNA in the presence of H2O2. The antitumor properties and mechanism of the complexes have been analyzed by MTT assay, cell cycle analysis, apoptosis assay and Western blot analysis. The results showed that the free ligands and their corresponding complexes all possess antiproliferative activities with very low IC50 values against Hela, BIU-87 and SPC-A-1 cell lines. Complex 1, which has a strongly electron-withdrawing nitro group, exhibited the best antiproliferative activities. Complex 1 caused G0/G1 phase arrest of the cell cycle and induced apoptosis in Hela cells. Additionally, complex 1 attenuated the phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2).This indicates that inhibition of the ERK1/2 signaling pathway may contribute to the antitumor effects of these complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号