首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel diblock copolymer consisting of poly(vinylferrocene) (PVFc) and poly(N,N‐diethylacrylamide) (PDEA) is synthesized via a combination of anionic and RAFT polymerization. The use of a novel route to hydroxyl‐end‐functionalized metallopolymers in anionic polymerization and subsequent esterification with a RAFT agent leads to a PVFc macro‐CTA ( = 3800 g mol−1; Đ = 1.17). RAFT polymerization with DEA affords block copolymers as evidenced by 1H NMR spectroscopy as well as size exclusion chromatography (6400 ≤ ≤ 33700 g mol−1; 1.31 ≤ Đ 1.28). Self‐assembly of the amphiphilic block copolymers in aqueous solution leads to micelles as shown via TEM. Importantly, the distinct thermo‐responsive and redox‐responsive character of the blocks is probed via dynamic light scattering and found to be individually and repeatedly addressable.

  相似文献   


2.
3.
In this paper, we report on the tunable metal‐enhanced fluorescence (MEF) of Ag nanostructures. Because of the good MEF properties of the highly dendritic Ag nanostructures, we obtained an increase of up to 25 times for the weak fluorescence of porphyrin molecules (Por4–). More importantly, by the introduction of a stimulus‐responsive PAA/PDDA multilayer film as an interlayer, the distance between the fluorophores and the Ag nanostructures could be tuned by immersing the substrates into solutions of different ionic strength or pH. The MEF behavior of the composite films could thus be tuned in a controlled manner, because of the distance dependent nature of the MEF effects.

  相似文献   


4.
5.
Triple stimuli (temperature/pH/photo)‐responsive amphiphilic glycopolymer, poly(2‐(dimethylamino)ethyl methacrylate‐co‐6‐O‐methacryloyl‐1,2,3,4‐di‐O‐isopropylidene‐D‐galactopyranose)‐b‐poly(4‐(4‐methoxyphenylazo)phenoxy methacrylate) [P(DMAEMA‐co‐MAIpGP)‐b‐PMAZO] was synthesized by atom transfer radical polymerization, followed by the hydrolysis of MAIpGP groups, resulting in the target product poly(2‐(dimethylamino)ethyl methacrylate‐co‐6‐O‐methacryloyl‐D‐galactopyranose)‐b‐poly(4‐(4‐methoxyphenylazo)phenoxy methacrylate) [P(DMAEMA‐co‐MAGP)‐b‐PMAZO]. The composition, moleculer weight, and moleculer weight distribution of the resultant polymers were characterized by 1H NMR and gel permeation chromatography. The micelles formed in aqueous solutions were simulated by various chemical and physical stimuli and characterized by dynamic light scattering, transmission electron microscopy, and UV‐vis spectroscopy. It was found that the glycopolymer is responsive to three different types of stimulus (light, temperature, and pH). The poly(2‐(dimethylamino) ethyl methacrylate) segments give thermo‐ and pH‐responsiveness. The presence of the azobenzene moiety endows the block copolymer to exhibit light‐responsiveness due to its reversible trans‐cis isomerization conversion. The triple stimuli‐responsive glycopolymer micelles can simulate biomacromolecues in vivo/in vitro environment and can be expected to open up new applications in various fields. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2131–2138  相似文献   

6.
New water‐soluble block copolymers of 2‐(2‐methoxyethoxy)ethyl methacrylate (MEO2MA), oligo(ethylene glycol) methacrylate (OEGMA), and N‐(3‐(dimethylamino) propyl) methacrylamide (DMAPMA) (poly(OEGMA‐co‐MEO2MA)‐b‐poly(DMAPMA)) were prepared via sequential reversible addition‐fragmentation chain transfer (RAFT) polymerization. Selective quaternization of poly(DMAPMA) block gives poly(OEGMA‐co‐MEO2MA)‐b‐poly((3‐[N‐(3‐methacrylamidopropyl)‐N,N‐dimethyl]ammoniopropane sulfonate)‐coN‐(3‐(dimethylamino) propyl) methacrylamide), such block copolymer exhibits double thermo‐responsive behavior in water, poly(MEO2MA‐co‐OEGMA) block shows a lower critical solution temperature (LCST), and poly((3‐[N‐(3‐methacrylamidopropyl)‐N,N‐dimethyl]ammoniopropane sulfonate)‐co‐N‐(3‐(dimethylamino) propyl) methacrylamide) block shows a upper critical solution temperature (UCST). Both of LCST and UCST can be controlled: LCST could be tuned by the fraction of OEGMA units in poly(OEGMA‐co‐MEO2MA), and UCST was found to be dependent on the degree of quaternization (DQ).

  相似文献   


7.
For most stimuli‐responsive polymer materials (SRPMs), such as polymer gels, micelles, and brushes, the responsive mechanism is based on the solubility or compatibility with liquid media. That basis always results in distorting or collapsing the material's appearance and relies on external liquids. Here, a novel kind of SRPMs is proposed. Unlike most SRPMs, liquid is stored within special domains rather than expelled, so it is deforming‐free and relying on no external liquid, which is referred to as self‐storage SRPMs (SS‐SRPMs). The facile and universal route to fabricate SS‐SRPMs allows for another novel family of SRPMs. Furthermore, it is validated that SS‐SRPMs can drastically respond to outside temperature like switchers, especially for optical and electrochemical responses. Those features hold prospects for applications in functional devices, such as smart optical lenses or anti‐self‐discharge electrolytes for energy devices.

  相似文献   


8.
Here, a novel multi‐stimuli‐responsive fluorescence probe is developed by incorporating spiropyran group into the coumarin‐substituted polydiacetylene (PDA) vesicles. The fluorescence of PDA can be turned on upon heating, and can be quenched upon exposure to UV light irradiation or pH stimuli owing to the fluorescene resonance energy transfer (FRET) between the red‐phase PDA and the open merocyanine (MC) form of spiropyran. Moreover, we have designed and experimentally realized a set of logic gate operations for the first time based on the fluorescence modulation of the designed system upon thermal, photo, and pH stimuli. This novel type of resettable logic gates augur well for practical applications in information storage, optical recording, and sensing in complicated microenvironments.

  相似文献   


9.
10.
A hyaluronic acid‐based anionic nanogel formed by self‐assembly of cholesteryl‐group‐bearing HA is designed for protein delivery. The HA nanogel spontaneously binds various types of proteins without denaturation, such as recombinant human growth hormone, erythropoietin, exendin‐4, and lysozyme. The HA nanogel shows unique colloidal properties, in particular that an injectable hydrogel is formed by salt‐induced association of the HA nanogel. A pharmacokinetic study in rats shows that an in situ gel formulation, prepared by simply mixing rhGH and HA nanogel in phosphate buffer, maintains plasma rhGH levels within a narrow range over one week. Therefore, HA nanogels offer a simple method for easy formulation of therapeutic proteins and are effective for sustained protein release systems.

  相似文献   


11.
Using molecular dynamics simulations with an OPLS force field, the lower critical solution temperature (LCST) of single‐ and multiple‐chain PNIPAM solutions in water is investigated. The sample containing ten polymer chains shows a sudden drop in size and volume at 305 K. Such an effect is absent in the single‐chain system. Large fluctuations of the physical properties of a short single‐chain prevent any clear detection of the LCST for the chosen model system, at least on the time scale of 200 ns. The results provide evidence that a critical number of PNIPAM monomer units must be present in the simulated system before MD simulations are capable to detect conformational changes unambiguously.

  相似文献   


12.
Rapidly shrinking poly(N‐isopropyl acrylamide) (PNIPAM) hydrogels are prepared by crosslinking with self‐assembled nanogels that consist of cholesteryl‐ and methacryloyl‐substituted pullulan (CHPMA). The CHPMA nanogel (Rh = 26.4 nm) was used as a crosslinker for a hydrophilic nanodomain. Transmission electron microscopy images of the nanogel‐crosslinked PNIPAM hydrogel reveal a well‐defined nanoporous structure. The nanogel‐crosslinked PNIPAM hydrogel shows rapid shrinking based on its structure. The shrinking half‐time was ≈2 min, which is about 3 400 times faster than that of a PNIPAM hydrogel crosslinked by methylene(bisacrylamide).

  相似文献   


13.
Stimuli‐directed alignment control of liquid crystals (LCs) with desired molecular orientation is currently in the limelight for the development of smart functional materials and devices. Here, photoresponsive azo thiol (AzoSH) was grafted onto gold nanoparticles (GNPs). The resulting hybrid GNPs were able to homogeneously mix with a commercially available nematic LC host, as evidenced by Cryo‐TEM. Interestingly, the LC nanocomposites were found to undergo reversible alignment transition upon light irradiation as a consequence of the transcis photoisomerization of the azo groups on the GNP surface. LC molecules in either planar or bare glass cells were able to change their alignment to vertical upon UV irradiation, while the vertically aligned LC molecules returned to the planar or random orientation under visible irradiation. Neither the azo thiol molecules nor the unfunctionalized GNPs alone promoted the alignment of the LC molecules in the system upon light irradiation. The photoinduced vertical alignment without applied electric or magnetic field was very stable over time and with respect to temperature. Furthermore, an optically switchable device based on the photostimulated reversible alignment control of LCs was demonstrated.  相似文献   

14.
The thermo‐responsiveness, swelling and mechanical properties of a series of novel poly(ester‐ether urethane) hydrogels have been investigated. These thermo‐sensitive hydrogels were obtained by combining hydrophobic biodegradable poly(ε‐caprolactone) diols and hydrophilic two‐, three‐ and four‐arm hydroxyl terminated poly(ethylene glycol) (PEG) of various molecular weights, using hexamethylene diisocyanate, dichloroethane as solvent and a tin‐based catalyst. The use of multifunctional PEGs leads to the formation of covalent crosslinking points allowing an additional control of the swelling capability. Thus, it was found that tuning the hydrophilic/hydrophobic balance and the crosslinking degree by changing the composition, the swelling and the thermo‐responsive behavior of these hydrogels could be modulated. The obtained hydrogels showed a volume transition at around room temperature. Therefore, and taking into account their biocompatibility, these hydrogels show promising properties for biomedical applications, such as drug delivery. Thus, the loading and release of diltiazem hydrochloride, an antihypertensive drug used as model, were investigated. These new PEG polyurethane hydrogels were able to incorporate a high amount of drug providing a sustained release after an initial burst effect. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Controllable phase segregation adjustment for immiscible polymer blends has always been tough, which hinders the development of amphiphilic antifouling coatings from more accessible blends. Herein, methacrylated poly(dimethylsiloxane) (PDMS‐MA) was synthesized and mixed with poly(ethylene glycol)methylether methacrylate (PEG‐MA). It was interestingly discovered that these PDMS‐MA/PEG‐MA blends displayed upper critical solution temperatures (UCST) due to thermo‐induced conformational change of PEG‐MA and the UCST changed with PDMS‐MA/PEG‐MA mass ratios. Micro‐/nano‐phase segregation, nanophase segregation, or homogenous morphology were therefore achieved. These PDMS‐MA/PEG‐MA blends with different mass ratios were UV‐cured under varying temperatures to fabricate coatings. Their surface morphology and wettability are readily adjusted by phase segregation. For the first time, highly hydrophilic surface was achieved for coatings with microphase segregation because of the exposure of PEG‐rich domains, which exhibited an enhanced protein resistance against bovine serum albumin (BSA). Anti‐bacterial performance (Shewanella loihica) was also observed for these PDMS/PEG coatings. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1612–1623  相似文献   

16.
Stimuli‐responsive nanocarriers with the ability to respond to tumorous heterogeneity have been extensively developed for drug delivery. However, the premature release during blood circulation and insufficient intracellular drug release are still a significant issue. Herein, three disulfide bonds are introduced into the amphiphilic poly(ethylene glycol)‐polycaprolactone copolymer blocks to form triple‐sensitive cleavable polymeric nanocarrier (tri‐PESC NPs) to improve its sensitivity to narrow glutathione (GSH) concentration. The tri‐PESC NPs keep intact during blood circulation due to the limited cleaving of triple‐disulfide bonds, whereas the loaded drug is efficiently released at tumor cells with the increased concentration of GSH. In vitro studies of doxorubicin‐loaded tri‐PESC NPs show that the nanocarriers achieve sufficient drug release in cancerous cells and inhibit the tumor cells growth, though they only bring minimum damage to normal cells. Therefore, the tri‐PESC NPs with triple‐sensitive cleavable bonds hold great promise to improve the therapeutic index in cancer therapy.

  相似文献   


17.
Stimuli responsiveness in polymer design is providing basis for diversely new and advanced materials that exhibit switchable porosity in membranes and coatings, switchable particle formation and thermodynamically stable nanoparticle dispersions, polymers that provide directed mechanical stress in response to intensive fields, and switchable compatibility of nanomaterials in changing environments. The incorporation of ionic liquid monomers has resulted in many new polymers based on the imidazolium group. These polymers exhibit all of the above‐articulated material properties. Some insight into how these anion responsive polymers function has become empirically available. Much opportunity remains for extending our understanding as well as for designing more refined stimuli‐responsive materials.  相似文献   

18.
Common CO2‐based biodegradable polycarbonates like poly(propylene carbonate) or poly(cyclohexene carbonate) are generally hydrophobic, leading to slow biodegradation rate and poor cell adhesion, which limit their applications in the biomedical field. Here hydrophilic polycarbonates were prepared by one‐pot terpolymerization of CO2, propylene oxide (PO), and 2‐((2‐(2‐(2‐methoxyethoxy)ethoxy)ethoxy)methyl)oxirane (ME3MO) using binary Salen Co(III)‐Cl/PPNCl catalyst system. The resultant terpolymers showed one glass transition temperature (Tg), which decreased with the increase of ME3MO units in the terpolymers (FME3MO). Water contact angles of the resultant terpolymers with FME3MO of 4.2?23.6% were 68?25°, while that of poly(propylene carbonate) was 90°, indicating that the terpolymers became hydrophlilic. Furthermore, the terpolymers with FME3MO more than 25.8% exhibited reversible and rapid thermo‐responsive property in water, and the lower critical solution temperature (LCST) was highly sensitive to FME3MO. In particular, aqueous solution of the terpolymer with FME3MO of 72.6% showed a LCST around 35.2 °C, close to body temperature, which was promising for biomedical applications, especially for in vivo applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2834–2840.  相似文献   

19.
Poly[N‐isopropylacrylamide‐g‐poly(ethylene glycol)]s with a reactive group at the poly(ethylene glycol) (PEG) end were synthesized by the radical copolymerization of N‐isopropylacrylamide with a PEG macromonomer having an acetal group at one end and a methacryloyl group at the other chain end. The temperature dependence of the aqueous solutions of the obtained graft copolymers was estimated by light scattering measurements. The intensity of the light scattering from aqueous polymer solutions increased with increasing temperature. In particular, at temperatures above 40°C, the intensity abruptly increased, indicating a phase separation of the graft copolymer due to the lower critical solution temperature (LCST) of the poly(N‐isopropylacrylamide) segment. No turbidity was observed even above the LCST, and this suggested a nanoscale self‐assembling structure of the graft copolymer. The dynamic light scattering measurements confirmed that the size of the aggregate was in the range of several tens of nanometers. The acetal group at the end of the PEG graft chain was easily converted to the aldehyde group by an acid treatment, which was analyzed by 1H NMR. Such a temperature‐induced nanosphere possessing reactive PEG tethered chains on the surface is promising for new nanobased biomedical materials. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1457–1469, 2006  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号