首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Synthesis of a cyclodextrin (CD) polyrotaxane is achieved for the first time by simultaneous free radical polymerization of isoprene, threading by CD, and stoppering by copolymerization of styrene. This reaction is performed in an eco‐friendly manner in an aqueous medium similar to classical emulsion polymerization. Threaded CD rings of the polyrotaxane are cross‐linked by hexamethylene diisocyanate, leading to highly elastic slide‐ring gels.

  相似文献   


2.
The synthesis and electrochemical characterization of novel polymers bearing phenoxyl‐radicals as redox‐active side chains is described. The monomers are synthesized from the corresponding phenols and quinones, respectively. These compounds are subsequently poly­merized via ring‐opening metathesis polymerization. The electrochemical properties of the phenoxyl‐radical polymers are characterized using cyclic voltammetry and the most promising polymer is investigated as active material in a lithium coin‐cell, creating the first phenoxyl‐lithium battery. These phenoxyl‐containing polymers represent interesting anode materials for organic radical and lithium batteries due to their suitable redox‐potentials and possibility to create batteries with higher potentials as well as straightforward synthesis procedures.

  相似文献   


3.
Polysaccharides are abundant in nature, renewable, nontoxic, and intrinsically biodegradable. They possess a high level of functional groups including hydroxyl, amino, and carboxylic acid groups. These functional groups can be utilized for further modification of polysaccharides with small molecules, polymers, and crosslinkers; the modified polysaccharides have been used as effective building blocks in fabricating novel biomaterials for various biomedical applications such as drug delivery carriers, cell‐encapsulating biomaterials, and tissue engineering scaffolds. This review describes recent strategies to modify polysaccharides for the development of polysaccharide‐based biomaterials; typically self‐assembled micelles, crosslinked microgels/nanogels, three‐dimensional hydrogels, and fibrous meshes. In addition, the outlook is briefly discussed on the important aspects for the current and future development of polysaccharide‐based biomaterials, particularly tumor‐targeting intracellular drug delivery nanocarriers.

  相似文献   


4.
Hierarchical semicrystalline block copolymer nanoparticles are produced in a segmented gas‐liquid microfluidic reactor with top‐down control of multiscale structural features, including nanoparticle morphologies, sizes, and internal crystallinities. Control of multiscale structure on disparate length scales by a single control variable (flow rate) enables tailoring of drug delivery nanoparticle function including release rates.

  相似文献   


5.
Amino‐cellulose‐based nanofibers are prepared by electrospinning of blended solutions of 6‐deoxy‐6‐trisaminoethyl‐amino (TEAE) cellulose and polyvinyl alcohol (PVA). The TEAE cellulose with a degree of substitution of 0.67 is synthesized via a nucleophilic displacement reaction starting from cellulose‐p‐toluenesulfonic acid ester. Several solution characteristics such as polymer concentration, electrical conductivity, and surface tension as well as setup parameters are investigated to optimize the ability of nanofiber formation. These parameters are evaluated using the rheological studies of the solutions. The nanofibers obtained are characterized by scanning electron microscopy (SEM) and show a high antimicrobial activity against Staphylococcus aureus and Klebsiella pneumoniae.

  相似文献   


6.
A group of crosslinked cyclic siloxane (Si O) and silazane (Si N) polymers are synthesized via solvent‐free initiated chemical vapor deposition (iCVD). Notably, this is the first report of cyclic polysilazanes synthesized via the gas‐phase iCVD method. The deposited nanoscale thin films are thermally stable and chemically inert. By iCVD, they can uniformly and conformally cover nonplanar surfaces having complex geometry. Although polysiloxanes are traditionally utilized as dielectric materials and insulators, our research shows these cyclic organosilicon polymers can conduct lithium ions (Li+) at room temperature. The conformal coating and the room temperature ionic conductivity make these cyclic organosilicon polymers attractive for use as thin‐film electrolytes in solid‐state batteries. Also, their synthesis process and properties have been systemically studied and discussed.

  相似文献   


7.
The chemical control of cell division has attracted much attention in the areas of single cell‐based biology and high‐throughput screening platforms. A mussel‐inspired cytocompatible encapsulation method for achieving a “cell‐division control” with cross‐linked layer‐by‐layer (LbL) shells is developed. Catechol‐grafted polyethyleneimine and hyaluronic acid are chosen as polyelectrolytes for the LbL process, and the cross‐linking of polyelectrolytes is performed at pH 8.5. Cell division is controlled by the number of the LbL nanolayers and cross‐linking reaction. We also suggest a new measuring unit, , for quantifying “cell‐division timing” based on microbial growth kinetics.

  相似文献   


8.
The preparation of multifunctional polymers and block copolymers by a straightforward one‐pot reaction process that combines enzymatic transacylation with light‐controlled polymerization is described. Functional methacrylate monomers are synthesized by enzymatic transacylation and used in situ for light‐controlled polymerization, leading to multifunctional methacrylate‐based polymers with well‐defined microstructure.

  相似文献   


9.
A surface plasmon resonance (SPR) expression after hybridization of chitosan–gold nanoparticle‐antibody ( CS ‐ AuNPs‐Ab ) based on: i) metal‐free click chemistry, and, ii) in water system as an approach for a rapid antigen sensing, is proposed. The chitosan‐hydroxybenzyl triazole complex enables us to carry out the conjugation of mPEG and trifluoromethylated oxanorbornadiene ( OND ) in water. CS‐mPEG‐OND further allows metal‐free click to hybridize chitosan ( CS ) with azido‐modified gold nanoparticles ( azido‐AuNPs ) in aqueous solution at room temperature. The CS‐mPEG‐OND conjugated with LipL32 antibody ( Ab ) not only effectively binds with LipL32 antigen ( Ag ) but also performs the cycloaddition with azido‐AuNPs to display a change in color within 2 min. The phenomenon leads to a simple and efficient naked‐eye antigen detection technique.

  相似文献   


10.
Though great attention has been paid in constructing well‐defined nano‐structures via the self‐assembly of amphiphilic macromolecules, the self‐assembly of non‐amphiphilic macromolecules in nanodroplet has drawn less attention up to now. Recently, we prepared a temperature‐responsive PEG‐based branched polymer with disulfide bonds in its backbone via reversible addition–fragmentation chain transfer (RAFT) polymerization of 2‐(2‐methoxyethoxy) ethyl methacrylate, oligo(ethylene glycol) methacrylate, and N,N′‐cystamine bisacrylamide. Subsequently, we loaded the branched polymer into nanodroplets, and have found that the self‐assembly behaviors of this branched poly­mer in the nanodroplet are different from those in common solution. Bioreducible nanocapsules with tunable size can easily formed in nanodroplet even at high concentration.

  相似文献   


11.
Cross‐linked azobenzene liquid‐crystalline polymer films with a poly(oxyethylene) backbone are synthesized by photoinitiated cationic copolymerization. Azobenzene moieties in the film surface toward the light source are simultaneously photoaligned during photopolymerization with unpolarized 436 nm light and thus form a splayed alignment in the whole film. The prepared films show reversible photoinduced bending behavior with opposite bending directions when different surfaces of one film face to ultraviolet light irradiation.

  相似文献   


12.
Imitating the natural “energy cascade” architecture, we present a single‐molecular rod‐like nano‐light harvester (NLH) based on a cylindrical polymer brush. Block copolymer side chains carrying (9,9‐diethylfluoren‐2‐yl)methyl methacrylate units as light absorbing antennae (energy donors) are tethered to a linear polymer backbone containing 9‐anthracenemethyl methacrylate units as emitting groups (energy acceptors). These NLHs exhibit very efficient energy absorption and transfer. Moreover, we manipulate the energy transfer by tuning the donor–acceptor distance.

  相似文献   


13.
Electrohydrodynamic cojetting has been employed to synthesize compartmentalized microfibers from thermally responsive hydrogels. The synthesis of the hydrogels as well as their transformation into compartmentalized microcylinders is discussed. After programmable shape‐shifting, snail‐like particles are obtained that undergo functional and structural reconfiguration in response to a change in temperature.

  相似文献   


14.
A linear supramolecular polymer based on the self‐assembly of an easily available copillar[5]arene monomer is efficiently prepared, which is evidenced by the NMR spectroscopy, viscosity measurement, and DOSY experiment. The single‐crystal X‐ray analysis reveals that the polymerization of the AB‐type monomer is driven by the quadruple CH•••π interactions and one CH•••O interaction.

  相似文献   


15.
The present review focuses on the recent progress made in thin film orientation of semi‐conducting polymers with particular emphasis on methods using epitaxy and shear forces. The main results reported in this review deal with regioregular poly(3‐alkylthiophene)s and poly(dialkylfluorenes). Correlations existing between processing conditions, macromolecular parameters and the resulting structures formed in thin films are underlined. It is shown that epitaxial orientation of semi‐conducting polymers can generate a large palette of semi‐crystalline and nanostructured morphologies by a subtle choice of the orienting substrates and growth conditions.

  相似文献   


16.
Hypoxia plays a critical role in the development and wound healing process, as well as a number of pathological conditions. Here, dextran‐based hypoxia‐inducible (Dex‐HI) hydrogels formed with in situ oxygen consumption via a laccase−medicated reaction are reported. Oxygen levels and gradients were accurately predicted by mathematical simulation. It is demonstrated that Dex‐HI hydrogels provide prolonged hypoxic conditions up to 12 h. The Dex‐HI hydrogel offers an innovative approach to delineate not only the mechanism by which hypoxia regulates cellular responses, but may facilitate the discovery of new pathways involved in the generation of hypoxic and oxygen gradient environments.

  相似文献   


17.
The controlled synthesis of poly(oligo(2‐ethyl‐2‐oxazoline)methacrylate) (P(OEtOxMA)) polymers by Cu(0)‐mediated polymerization in water/methanol mixtures is reported. Utilizing an acetal protected aldehyde initiator for the polymerization, well‐defined polymers are synthesized (>99% conversion, Ð < 1.25) with subsequent postpolymerization deprotection resulting in α‐aldehyde end group containing comb polymers. These P(OEtOxMA) are subsequently site‐specifically conjugated, via reductive amination, to a dipeptide (NH2‐Gly‐Tyr‐COOH) as a model peptide, prior to conjugation to the functional peptide oxytocin. The resulting oxytocin conjugates are evaluated in comparison to poly(oligo(ethylene glycol) methyl ether methacrylate) combs synthesized in the same manner for potential effects on thermal stability in comparison to the native peptide.

  相似文献   


18.
Thin, phenylboronic acid‐containing polymer coatings are potentially attractive sensory layers for a range of glucose monitoring systems. This contribution presents the synthesis and properties of glucose‐sensitive polymer brushes obtained via surface RAFT polymerization of 3‐methacrylamido phenylboronic acid (MAPBA). This synthetic strategy is attractive since it allows the controlled growth of PMAPBA brushes with film thicknesses of up to 20 nm via direct polymerization of MAPBA without the need for additional post‐polymerization modification or deprotection steps. QCM‐D sensor chips modified with a PMAPBA layer respond with a linear change in the shift of the fundamental resonance frequency over a range of physiologically relevant glucose concentrations and are insensitive toward the presence of fructose, thus validating the potential of these polymer brush films as glucose sensory thin coatings.

  相似文献   


19.
Polydiacetylenes have received intense attention on account of their well‐established chromic alterations that are detectable often by the naked eye, making them ideal for a variety of applications such as biosensory materials. These polymers have been fabricated in a variety of materials platforms including 3D crystals, 2D monolayers, and 0D spherical vesicles; however, 1D morphologies that might be useful for directional energy migration are less common. This article describes the development and current research efforts of protein‐based 1D nanowire‐like supramolecular assemblies with embedded polydiacetylenes.

  相似文献   


20.
Hierarchical self‐assembly of transient composite hydrogels is demonstrated through a two‐step, orthogonal strategy using nanoparticle tectons interconnected through metal–ligand coordination complexes. The resulting materials are highly tunable with moduli and viscosities spanning many orders of magnitude, and show promising self‐healing properties, while maintaining complete optical transparency.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号