首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost‐effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10‐anthraquinone‐2,7‐disulfonic acid (AQDS)/1,2‐benzoquinone‐3,5‐disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L?1 and a solar‐to‐output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency.  相似文献   

2.
Solid boosters are an emerging concept for improving the performance and especially the energy storage density of the redox flow batteries, but thermodynamical and practical considerations of these systems are missing, scarce or scattered in the literature. In this paper we will formulate how these systems work from the point of view of thermodynamics. We describe possible pathways for charge transfer, estimate the overpotentials required for these reactions in realistic conditions, and illustrate the range of energy storage densities achievable considering different redox electrolyte concentrations, solid volume fractions and solid charge storage densities. Approximately 80% of charge storage capacity of the solid can be accessed if redox electrolyte and redox solid have matching redox potentials. 100 times higher active areas are required from the solid boosters in the tank to reach overpotentials of <10 mV.  相似文献   

3.
Abstract

Gibbs free energies of reductive dechlorination processes of chlorobenzenes are calculated from thermodynamic data. The results are utilized to predict redox potentials and isomer distribution yields.

The model predicts a standard redox potential of 0.680 V for the reduction of hexachlorobenzene to pentachlorobenzene, tapering off to 0.535 V for the reduction of monochlorobenzene to benzene. It is shown that under anaerobic conditions, reductive dechlorination is more likely to occur, while aerobic conditions favour the formation of chlorophenols.

An isomer distribution yield is predicted for each of the reductive dechlorination processes of chlorobenzenes. Predicted yields correspond to experimental values within 10%. The model includes a possibility to establish a temperature dependence of the relative isomer yields.  相似文献   

4.
The performance of a thermodynamic cycle for the calculation of the standard reduction potential (SRP) of a series of metals is examined. It is found that the introduction of simple entropic corrections substantially improves the agreement with experimental data. The accuracy of the estimations is in the range of 0.04 V, which opens the possibility to calculate the SRP for metals in non-aqueous solvents or other unusual situations.  相似文献   

5.
Reduction and oxidation (redox) reactions are widely used for removal of nitrocompounds from contaminated soil and water. Structures and redox properties for complexes of nitrocompounds, such as 2,4,6‐trinitrotoluene (TNT), 2,4‐dinitrotoluene (DNT), 2,4‐dinitroanisole (DNAN), and 5‐nitro‐2,4‐dihydro‐3H?1,2,4‐triazol‐3‐one (NTO), with common inorganic ions (Na+, Cl?, ) were investigated at the SMD(Pauling)/PCM(Pauling)/MPWB1K/TZVP level of theory. Atoms in molecules (AIM) theory was applied to analyze the topological properties of the bond critical points involved in the interactions between the nitrocompounds and the ions. Topological analyses show that intermolecular interactions of the types O(N)…Na+, C‐H…Cl?( ), and C…Cl?( ) may be discussed as noncovalent closed‐shell interactions, while N‐H···Cl?( ) hydrogen bonds are partially covalent in nature. Complexation causes significant decrease of redox activity of the nitrocompounds. Analysis of the reduction potentials of the complexes obtained through application of the Pourbaix diagram of an iron/water system revealed that sodium complexes of NTO might be reduced by metallic iron. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
The intermittent nature of the sunlight and its increasing contribution to electricity generation is fostering the energy storage research. Direct solar charging of an auspicious type of redox flow battery could make solar energy directly and efficiently dispatchable. The first solar aqueous alkaline redox flow battery using low cost and environmentally safe materials is demonstrated. The electrolytes consist of the redox couples ferrocyanide and anthraquinone‐2,7‐disulphonate in sodium hydroxide solution, yielding a standard cell potential of 0.74 V. Photovoltage enhancement strategies are demonstrated for the ferrocyanide‐hematite junction by employing an annealing treatment and growing a layer of a conductive polyaniline polymer on the electrode surface, which decreases electron–hole recombination.  相似文献   

7.
Owing to their broad range of redox potential, quinones/hydroquinones can be utilized for energy storage in redox flow batteries. In terms of stability, organic catholytes are more challenging than anolytes. The two-electron transfer feature adds value when building all-quinone flow battery systems. However, the dimerization of quinones/hydroquinones usually makes it difficult to achieve a full two-electron transfer in practical redox flow battery applications. In this work, we designed and synthesized four new hydroquinone derivatives bearing morpholinomethylene and/or methyl groups in different positions on the benzene ring to probe molecular stability upon battery cycling. The redox potential of the four molecules were investigated, followed by long-term stability tests using different supporting electrolytes and cell cycling methods in a symmetric flow cell. The derivative with two unoccupied ortho positions was found highly unstable, the cell of which exhibited a capacity decay rate of ~50% per day. Fully substituted hydroquinones turned out to be more stable. In particular, 2,6-dimethyl-3,5-bis(morpholinomethylene)benzene-1,4-diol (asym-O-5) displayed a capacity decay of only 0.45%/day with four-week potentiostatic cycling at 0.1 M in 1 M H3PO4. In addition, the three fully substituted hydroquinones displayed good accessible capacity of over 82%, much higher than those of conventional quinone derivatives.  相似文献   

8.
A Monte Carlo (MC) docking method was introduced in order to predict the aqueous solubility of inclusion complexes composed of small organic compounds and various cyclodextrins. The slope (S) of the AL-type phase solubility curve was accurately predicted by a combination of the interaction energy and nonpolar solvation free energy for each of the docked complexes. The regression equation for S, the slope of the phase solubility curve gives a fine correlation coefficient, r 2, of 0.913 and standard error of 0.028 for the 63 organic compounds complexed with cyclodextrins.  相似文献   

9.
10.
A cyclic voltammetry study of a series of iron(III) TAML activators of peroxides of several generations in acetonitrile as solvent reveals reversible or quasireversible FeIII/IV and FeIV/V anodic transitions, the formal reduction potentials (E°′) for which are observed in the ranges 0.4–1.2 and 1.4–1.6 V, respectively, versus Ag/AgCl. The slope of 0.33 for a linear E°′(IV/V) against E°′(III/IV) plot suggests that the TAML ligand system plays a bigger role in the FeIII/IV transition, whereas the second electron transfer is to a larger extent an iron-centered phenomenon. The reduction potentials appear to be a convenient tool for analysis of various properties of iron TAML activators in terms of linear free energy relationships (LFERs). The values of E°′(III/IV) and E°′(IV V−1) correlate 1) with the pKa values of the axial aqua ligand of iron(III) TAMLs with slopes of 0.28 and 0.06 V, respectively; 2) with the Stern–Volmer constants KSV for the quenching of fluorescence of propranolol, a micropollutant of broad concern; 3) with the calculated ionization potentials of FeIII and FeIV TAMLs; and 4) with rate constants kI and kII for the oxidation of the resting iron(III) TAML state by H2O2 and reactions of the active forms of TAMLs formed with donors of electrons S, respectively. Interestingly, slopes of log kII versus E°′(III/IV) plots are lower for fast-to-oxidize S than for slow-to-oxidize S. The log kI versus E°′(III/IV) plot suggests that the manmade TAML catalyst can never be as reactive toward H2O2 as a horseradish peroxidase enzyme.  相似文献   

11.
氧化还原电动势是了解核酸中电荷/电子转移过程以及设计具有新型氧化还原活性的碱基类化合物的重要参数. 本文对82个芳香化合物的氧化还原电动势进行理论预测, 通过计算值和实验值的比较发现: 气相采用B3LYP/6-311++G(2df,2p)//B3LYP/6-31+G(d)方法, 液相采用HF-COSMORS/UAHF方法, 对运用HF- CPCM/UAHF方法在水相重新优化的构型计算溶剂化能, 能有效预测芳香化合物水相氧化还原电动势, 该理论方法计算的绝对均方根误差(RMSD)为0.124 V. 运用该理论方法成功预测了属于芳香化合物的核酸碱基及其代谢物的水相氧化还原电动势. 根据预测结果, 讨论了核酸中电荷/电子转移过程以及结构改变对设计具有新型氧化还原活性的核酸碱基类化合物的影响. 本文为设计具有氧化还原活性的新型核酸碱基类化合物提供了一种理论方法.  相似文献   

12.
Modern simulation techniques have reached a level of maturity which allows a wide range of problems in chemistry and materials science to be addressed. Unfortunately, the application of first principles methods with predictive power is still limited to rather small systems, and despite the rapid evolution of computer hardware no fundamental change in this situation can be expected. Consequently, the development of more efficient but equally reliable atomistic potentials to reach an atomic level understanding of complex systems has received considerable attention in recent years. A promising new development has been the introduction of machine learning (ML) methods to describe the atomic interactions. Once trained with electronic structure data, ML potentials can accelerate computer simulations by several orders of magnitude, while preserving quantum mechanical accuracy. This Review considers the methodology of an important class of ML potentials that employs artificial neural networks.  相似文献   

13.
Although previously studied [(HOOC)4(TBPor)Ru(NCS)2]2– ( A ; TBPor = tetrabenzoporphrin) avoided the intrinsic π‐stacking aggregation of planar metallophorphryins via incorporating two axial ligands, these isothiocyanato groups are believed to be the weakest part of the sensitizer while operating in dye‐sensitized solar cells (DSSCs). In this work, a series of thiocyanate‐free ruthenium porphyrin complexes featuring with phenyl/substituted‐phenyl axial groups, [(HOOC)4(TBPor)Ru(L′)2]2– (L′ = Ph ( 1 ), PhF2 ( 2 ), PhCl2 ( 3 ), PhBr2 ( 4 ), and PhI2 ( 5 )), have been examined using density functional theory (DFT) and time‐dependent DFT (TD‐DFT). Both analyses of electronic structures and calculations of interaction energies demonstrate that the Ru‐L′ interaction in 1 – 5 is significantly enhanced relative to the Ru‐NCS in A , which will raise chemical stability of the former in DSSCs. Single‐electron oxidation mechanism has been proposed. Oxidation potentials (E0) are increased by 0.2–0.6 V when changing axial groups from NCS to Ph/PhX2. The spin‐orbit coupling (SOC) relativistic effects can be negligible in computing E0 values. TD‐DFT calculations show that 1 – 5 have more intense Q band in the visible region than A does. Taken together, high chemical stability, suitable oxidation potential and expanding absorption spectra would allow for potential applications of the thiocyanate‐free sensitizers in DSSCs. © 2016 Wiley Periodicals, Inc.  相似文献   

14.
Titanium-based polyanions have been intensively investigated for sodium-ion batteries owing to their superior structural stability and thermal safety. However, their low working potential hindered further applications. Now, a cation and anion dual doping strategy is used to boost the redox potential of Ti-based cathodes of Na3Ti0.5V0.5(PO3)3N as a new cathode material for sodium ion batteries. Both the Ti3+/Ti4+ and V3+/V4+ redox couples are reversibly accessed, leading to two distinctive voltage platforms at ca. 3.3 V and ca. 3.8 V, respectively. The remarkably improved cycling stability (86.3 %, 3000 cycles) can be ascribed to the near-zero volume strain in this unusual cubic symmetry, which has been demonstrated by in situ synchrotron-based X-ray diffraction. First-principles calculations reveal its well-interconnected 3D Na diffusion pathways with low energy barriers, and the two-sodium-extracted intermediate NaTi0.5V0.5(PO3)3N is also a stable phase according to formation energy calculations.  相似文献   

15.
Understanding and controlling the kinetics of O2 reduction in the presence of Li+‐containing aprotic solvents, to either Li+‐O2? by one‐electron reduction or Li2O2 by two‐electron reduction, is instrumental to enhance the discharge voltage and capacity of aprotic Li‐O2 batteries. Standard potentials of O2/Li+‐O2? and O2/O2? were experimentally measured and computed using a mixed cluster‐continuum model of ion solvation. Increasing combined solvation of Li+ and O2? was found to lower the coupling of Li+‐O2? and the difference between O2/Li+‐O2? and O2/O2? potentials. The solvation energy of Li+ trended with donor number (DN), and varied greater than that of O2? ions, which correlated with acceptor number (AN), explaining a previously reported correlation between Li+‐O2? solubility and DN. These results highlight the importance of the interplay between ion–solvent and ion–ion interactions for manipulating the energetics of intermediate species produced in aprotic metal–oxygen batteries.  相似文献   

16.
The presented program package, Conformational Analysis and Search Tool (CAST) allows the accurate treatment of large and flexible (macro) molecular systems. For the determination of thermally accessible minima CAST offers the newly developed TabuSearch algorithm, but algorithms such as Monte Carlo (MC), MC with minimization, and molecular dynamics are implemented as well. For the determination of reaction paths, CAST provides the PathOpt, the Nudge Elastic band, and the umbrella sampling approach. Access to free energies is possible through the free energy perturbation approach. Along with a number of standard force fields, a newly developed symmetry‐adapted perturbation theory‐based force field is included. Semiempirical computations are possible through DFTB+ and MOPAC interfaces. For calculations based on density functional theory, a Message Passing Interface (MPI) interface to the Graphics Processing Unit (GPU)‐accelerated TeraChem program is available. The program is available on request. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Titanium‐based polyanions have been intensively investigated for sodium‐ion batteries owing to their superior structural stability and thermal safety. However, their low working potential hindered further applications. Now, a cation and anion dual doping strategy is used to boost the redox potential of Ti‐based cathodes of Na3Ti0.5V0.5(PO3)3N as a new cathode material for sodium ion batteries. Both the Ti3+/Ti4+ and V3+/V4+ redox couples are reversibly accessed, leading to two distinctive voltage platforms at ca. 3.3 V and ca. 3.8 V, respectively. The remarkably improved cycling stability (86.3 %, 3000 cycles) can be ascribed to the near‐zero volume strain in this unusual cubic symmetry, which has been demonstrated by in situ synchrotron‐based X‐ray diffraction. First‐principles calculations reveal its well‐interconnected 3D Na diffusion pathways with low energy barriers, and the two‐sodium‐extracted intermediate NaTi0.5V0.5(PO3)3N is also a stable phase according to formation energy calculations.  相似文献   

18.
Reversible addition fragmentation chain transfer (RAFT) polymerizations of N‐isopropylacrylamide (NIPAM), and acrylamide (AM) were successfully performed in aqueous media at ambient temperature using a redox initiator, potassium persulfate (K2S2O8), and sodium thiosulfate (Na2S2O3). The molecular weight of the polymers obtained increases linearly with monomer conversion, molecular weight distribution is narrow even at high conversion (>90%), and a linear relationship exists between ln([M]0/[M]) and polymerization time. Moreover, self‐chain extension reaction also proceeded successfully. All the results demonstrate that K2S2O8–Na2S2O3 is a very efficient initiating system for the RAFT polymerizations of NIPAM and AM in aqueous media at room temperature.

  相似文献   


19.
The reduction of the electronic Schrodinger equation or its calculating algorithm from 4N‐dimensions to a (nonlinear, approximate) density functional of three spatial dimension one‐electron density for an N‐electron system, which is tractable in the practice, is a long desired goal in electronic structure calculation. If the Thomas‐Fermi kinetic energy (~∫ρ5/3d r 1) and Parr electron–electron repulsion energy (~∫ρ4/3d r 1) main‐term functionals are accepted, and they should, the later described, compact one‐electron density approximation for calculating ground state electronic energy from the 2nd Hohenberg–Kohn theorem is also noticeable, because it is a certain consequence of the aforementioned two basic functionals. Its two parameters have been fitted to neutral and ionic atoms, which are transferable to molecules when one uses it for estimating ground‐state electronic energy. The convergence is proportional to the number of nuclei (M) needing low disc space usage and numerical integration. Its properties are discussed and compared with known ab initio methods, and for energy differences (here atomic ionization potentials) it is comparable or sometimes gives better result than those. It does not reach the chemical accuracy for total electronic energy, but beside its amusing simplicity, it is interesting in theoretical point of view, and can serve as generator function for more accurate one‐electron density models. © 2008 Wiley Periodicals, Inc. J Comput Chem 2009  相似文献   

20.
The genetic algorithm (GA) is an intelligent approach for finding minima in a highly dimensional parametric space. However, the success of GA searches for low energy conformations of biomolecules is rather limited so far. Herein an improved GA scheme is proposed for the conformational search of oligopeptides. A systematic analysis of the backbone dihedral angles of conformations of amino acids (AAs) and dipeptides is performed. The structural information is used to design a new encoding scheme to improve the efficiency of GA search. Local geometry optimizations based on the energy calculations by the density functional theory are employed to safeguard the quality and reliability of the GA structures. The GA scheme is applied to the conformational searches of Lys, Arg, Met‐Gly, Lys‐Gly, and Phe‐Gly‐Gly representative of AAs, dipeptides, and tripeptides with complicated side chains. Comparison with the best literature results shows that the new GA method is both highly efficient and reliable by providing the most complete set of the low energy conformations. Moreover, the computational cost of the GA method increases only moderately with the complexity of the molecule. The GA scheme is valuable for the study of the conformations and properties of oligopeptides. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号