首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alkali treatment of the Ti‐6Al‐7Nb alloys with subsequent heat treatment has been adopted as an important surface treatment procedure for apatite formation in dental implants. This study examined the effects of alkali treatment on the precipitation of apatite on a Ti‐6Al‐7Nb alloy. All samples were immersed in a Hanks' Balanced Salts Solution [simulated body fluid (SBF)] at pH 7.4 and 36.5 °C for 15 days. The surface structural changes of samples due to the alkali treatment and immersing in SBF were analyzed by XRD, SEM and XPS. The cell toxicity was evaluated based on the optical density of the surviving cells. The samples were implanted into the abdominal connective tissue of mice for 4 weeks. A sodium titanate hydrogel layer was formed after immersion in an NaOH solution. A dense and uniform bone‐like apatite layer precipitated on the alkali and heat‐treated Ti‐6Al‐7Nb alloy in the SBF. There was a significant difference in cell toxicity between the treated and untreated Ti‐6Al‐7Nb (P < 0.05). The thickness of the fibrous capsule formed around the implant body was decreased significantly by the alkali and heat treatment (P < 0.05). The alkali treatment samples showed a better biocompatibility than the commercial metal samples. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
To improve the anti-corrosion behaviors of magnesium alloy in the inner environment of human body,a bioactive Ca-P coating was deposited on the AZ60 magnesium alloy by a novel simple method.The morphologies of the Ca-P coatings formed under different treatment time were studied by scanning electron microscopy(SEM).The corrosion behaviors of Ca-P coating were investigated by electrochemical polarization test and electrochemical impedance spectroscopy in both 3%(mass fraction) NaCl solution and simulated body fluid(SBF).Immersion test in SBF was performed to evaluate the corrosion rate of Ca-P coated magnesium alloy.X-Ray diffraction(XRD) analysis result shows that the coating mentioned above mainly consists of dicalcium phosphate dehydrate(CaHPO4·2H2O,DCPD) and β-tricalcium phosphate dehydrate[β-TCP,Ca3(PO4)2],which exhibits good corrosion resistance.After magnesium alloy was immersed in 1 mol/L NaOH solution at 80 ℃ for 2 h,hydroxyapatite [Ca10(PO4)6(OH)2,HA]appeared on the magnesium alloy substrate,which can further decrease the corrosion rate of AZ60 magnesium alloy in SBF.  相似文献   

3.
Phosphate chemical conversion (PCC) technology has attracted extensive attention for its ability to regulate the surface properties of biomedical metals. However, titanium (Ti)-based alloys exhibit inertia because of the native passive layer, whereas zinc (Zn)-based alloys show high activity in acidic PCC solutions. The substrate performance affects the chemical reaction in the phosphating solution, which further leads to diversity in coating properties. In this work, the zinc-phosphate (ZnP) coatings are prepared on Ti alloy (TA) and Zn alloy (ZA) substrates using the PCC method, respectively. The coatings prepared herein are detected by a scanning electron microscope (SEM), X-ray diffractometer (XRD), laser scanning confocal microscope (LSCM), universal testing machine, contact angle goniometer, and electrochemical workstation system. The results show that the substrate performance has little effect on the phase composition but can significantly affect the crystal microstructure, thickness, and bonding strength of the coatings. In addition, the ZnP coatings improve the surface roughness of the substrates and show good hydrophilicity and electrochemical corrosion resistance. The formation mechanism of the ZnP coating is revealed using potential-time curves, indicating that the metal–solution interfacial reaction plays a dominant role in the deposition process.  相似文献   

4.
在镁合金基底表面直接制备热障涂层,涂层的耐蚀性较差。采用超音速火焰喷涂法在镁合金基底和热障涂层之间分别制备了Al涂层和Zn涂层。通过XRD,SEM和EDS对涂层进行物相、微观结构和点扫描元素分析,采用电化学工作站对Al涂层试样和Zn涂层试样进行耐腐蚀性分析,同时研究了含Al中间层和含Zn中间层的热障涂层的抗热震性能。结果表明:Al涂层表面粗糙度(10.237±0.527μm)大于Zn涂层表面粗糙度(7.171±0.488μm),且喷涂过程中仅有轻微氧化。Al涂层试样的耐腐蚀性优于Zn涂层试样。含Zn中间层的热障涂层具有更好的抗热震性能。  相似文献   

5.
The production of eco-friendly hybrid sol–gel coatings for long term protection of metallic substrates from aggressive environments was one of the emerging areas, competing with conventional chromate and phosphate coatings. Herein, a nanocomposite has been synthesized from TiO2 and PVA through a novel sol-gel route and the structure and morphology of the same was characterized using X-ray diffraction, FTIR, UV–Vis spectroscopy, FESEM with EDAX, and AFM studies. The flower-like structured composite offers excellent corrosion protection properties in NaCl solution of sea water salinity. Impedance and polarization studies were carried out to monitor the anticorrosion performance of the materials coating. This coating on mild steel offers 98% inhibition efficiency in NaCl. The influence of loading PVA on TiO2 and its effect on corrosion efficiency have also been investigated. It is found that an optimum weight of 20 wt% PVA is required in the composite for beneficial corrosion resistance. 92% inhibition efficiency is registered by the coated MS in NaCl solution after 40 days of exposure and is quite encouraging compared to many of the recent reports. The Ti–O–Ti, and Fe-Ti-O linkage along with compactness and adherence of the material together contribute to better blocking of steel corrosion.  相似文献   

6.
铝金属基复合材料以其多方面的优异性能在航空、航天、汽车、电子和光学等工业领域中显示出了十分广泛的应用前景[1 ,2].某些种类的(如SiC颗粒增强)铝金属基复合材料已经开始走向工业规模的应用[3].然而,在铝金属基复合材料中由于增强体的存在使其内部组织结构极不均匀,在使用环境中极易形成腐蚀微电池而遭受点蚀、剥蚀、磨蚀等等腐蚀形式的破坏[4 ,5] .适用于常规铝合金防腐处理方法的阳极氧化法和铬酸盐化学氧化法(Alodine法)存在着下述弊端而不能对铝金属基复合材料起到有效的防腐作用:1)铝金属基复合…  相似文献   

7.
The electrodeposition of Al-Ti alloy on a mild steel substrate is examined in a Lewis acidic 66.7–33.3 mol% AlCl3-1-buthyl-3-methylimidazolium chloride ionic liquid containing TiCl4. Dense and compact Al-Ti alloy coatings with Ti content ranging from 5.3 to 11.4 at.% can be obtained under optimized conditions. The applied current densities and TiCl4 concentration are found to play central roles in controlling the alloy compositions and surface morphologies of the resultant Al-Ti alloy coatings. Ti content in Al-Ti alloys increases with initial increase in the current density and decreases when the current density is beyond 5 mA cm?2. In addition, the enhanced corrosion resistance of the mild steel substrate by the deposited Al-Ti alloy layers is evaluated via electrochemical techniques. The Al-Ti alloy coatings show much higher corrosion resistance than single Al coating, and this performance is improved with the increase of the Ti content.  相似文献   

8.
The present study was aimed at designing a novel porous hydroxyapatite/poly(ε-caprolactone) (nHAp/PCL) hybrid nanocomposite matrix on a magnesium substrate with high and low porosity. The coated samples were prepared using a dip-coating technique in order to enhance the bioactivity and biocompatibility of the implant and to control the degradation rate of magnesium alloys. The mechanical and biocompatible properties of the coated and uncoated samples were investigated and an in vitro test for corrosion was conducted by electrochemical polarization and measurement of weight loss. The corrosion test results demonstrated that both the pristine PCL and nHAp/PCL composites showed good corrosion resistance in SBF. However, during the extended incubation time, the composite coatings exhibited more uniform and superior resistance to corrosion attack than pristine PCL, and were able to survive severe localized corrosion in physiological solution. Furthermore, the bioactivity of the composite film was determined by the rapid formation of uniform CaP nanoparticles on the sample surfaces during immersion in SBF. The mechanical integrity of the composite coatings displayed better performance (∼34% higher) than the uncoated samples. Finally, our results suggest that the nHAp incorporated with novel PCL composite membranes on magnesium substrates may serve as an excellent 3-D platform for cell attachment, proliferation, migration, and growth in bone tissue. This novel as-synthesized nHAp/PCL membrane on magnesium implants could be used as a potential material for orthopedic applications in the future.  相似文献   

9.
The present investigation reports TiO2 coating on magnesium alloy AZ31 by sol–gel method via dip coating technique. TiO2 coated surface was characterized by thin film X-ray diffraction (TF-XRD), Fourier transform infrared red (FT-IR) spectroscopy, scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) spectroscopy, atomic force microscopy (AFM) and transmission electron microscopy (TEM) techniques. From TF-XRD results, the peaks at 2θ values of 25.14, 32.12, 68.73 and 70.11 confirm the presence of TiO2. The TiO2 is crystalline in nature and the crystallite size is about 32.4 nm. SEM-EDX, TEM and AFM show that the coated surface is uniform and nanoporous. FT-IR analysis shows that the peak in the range of 692 cm?1 is assigned to Ti–O–Ti stretching vibration. Contact angle measurements show that the coating is hydrophilic in nature. Bioactivity of the coating in simulated body fluid (SBF) was also examined, the hydroxyl functionalized surface greatly enhances the hydroxyapatite growth. The potentiodynamic polarization studies prove that the corrosion resistance of the TiO2 coated surface after immersion in SBF for 7 days is improved dramatically. Cell adhesion studies confirm the increased cell attachment on TiO2 coated surface when compared to uncoated alloy, due to less amount of Mg ion release from the substrate in the culture medium.  相似文献   

10.
基于纳米羟基磷灰石溶胶的nHA/PA66复合粉体制备与表征   总被引:2,自引:0,他引:2  
本文开发了一种新的制备纳米羟基磷灰石(nHA)/聚酰胺66(PA66)复合材料的方法。先用明胶包覆nHA棒状颗粒,再将其制备成以N,N-二甲基乙酰胺和甘油的混合液为溶剂的稳定溶胶。当nHA溶胶与PA66溶液混合时,相同的酰胺基团保证了二者之间良好的共混相容性,成功制备了nHA/PA66复合材料。X射线衍射(XRD)、傅立叶红外光谱分析(FTIR)、透射电镜(TEM)、扫描电镜-能谱分析(SEM-EDS)以及差热分析(DTA)和热重分析(TG)等表征了产物的形貌、结构及成分分布。结果表明:明胶对nHA颗粒具有显著的化学包覆作用,使nHA溶胶与PA66溶液得以均匀混合,均匀分布在PA66基体中,二者以氢键结合为一体。  相似文献   

11.
The behavior of cells responsible for bone formation, osseointegration, and bone bonding in vivo are governed by both the surface chemistry and topography of scaffold matrices. Bone-like apatite coatings represent a promising method to improve the osteoconductivity and bonding of synthetic scaffold materials to mineralized tissues for regenerative procedures in orthopedics and dentistry. Polycaprolactone (PCL) films were coated with calcium phosphates (CaP) by incubation in simulated body fluid (SBF). We investigated the effect of SBF ion concentration and soaking time on the surface properties of the resulting apatite coatings. CaP coatings were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), and energy dispersive X-ray spectrometry (EDX). Young's modulus (E(s)) was determined by nanoindentation, and surface roughness was assessed by atomic force microscopy (AFM) and mechanical stylus profilometry. CaP such as carbonate-substituted apatite were deposited onto PCL films. SEM and AFM images of the apatite coatings revealed an increase in topographical complexity and surface roughness with increasing ion concentration of SBF solutions. Young's moduli (E(s)) of various CaP coatings were not significantly different, regardless of the CaP phase or surface roughness. Thus, SBF with high ion concentrations may be used to coat synthetic polymers with CaP layers of different surface topography and roughness to improve the osteoconductivity and bone-bonding ability of the scaffold.  相似文献   

12.
Two kinds of biocompatible coatings were produced in order to improve the corrosion resistance of nickel titanium (NiTi) alloy. A titanium oxide–titanium (TiO2–Ti) composite was coated on NiTi alloy using electrophoretic method. After the coating process, the samples were heat‐treated at 1000 °C in two tube furnaces, the first one in argon atmosphere and the second one in nitrogen atmosphere at 1000 °C. The morphology and phase analysis of coatings were investigated using scanning electron microscopy and X‐ray diffraction analysis, respectively. The electrochemical behavior of the NiTi and coated samples was examined using polarization and electrochemical impedance spectroscopy tests. Electrochemical tests in simulated body fluid demonstrated a considerable increase in corrosion resistance of composite‐coated NiTi specimens compared to the non‐coated one. The heat‐treated composite coating sample in nitrogen atmosphere had a higher level of corrosion resistance compared to the heat‐treated sample in argon atmosphere, which is mainly due to having nitride phases. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
A layer of Al coatings was prepared on the S355 steel by arc spraying, which was conducted by anodic oxidation treatment; the morphologies, chemical element compositions and phases of Al coating, and anodic oxide layer were analyzed with field emission scanning electron microscope (FESEM), energy dispersive spectrometer (EDS) and X‐ray diffraction (XRD), respectively. The corrosion protections of Al coating before and after anodic oxidation were discussed with a seawater immersion test; the corrosion resistance mechanisms of Al coating and anodic oxide layer in the seawater were also investigated. The results show that the thickness of Al coating is about 300 µm by arc spraying, the sample surfaces become loose after seawater immersion corrosion and Cl? and O2? penetrate into the substrate from the cracks, destroying the binding properties of coating–substrate, and the coating fails. After anodic oxidation, the oxide layer is formed in the surface of Al coating with the thickness of about 30 µm; the corrosion products are mainly composed of Al(OH)3, which barraged the holes caused by seawater corrosion. The corrosion cracks are formed during the corrosion, while the number and depth of cracks decrease obviously after anodic oxidation treatment. The corrosion of Al coating becomes the local corrosion after anodic oxidation treatment, and the grains are smaller, which are easily nucleated to form a new corrosion resistance layer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The composite films consisting of hydroxyapatite (HAP) submicron particles embedded in the gel composed of the titania nanoparticles were prepared on commercial Ti6A14V plates with titania buffer layer obtained by a spin-coating technique. The films were calcined in air at various temperatures, and the bioactivities of the films were investigated by immersing them in acellular simulated body fliud (SBF). X-ray diffraction(XRD), Fourier transform infrared spectroscopy (FTIR), Field emission-scanning electron microscopy(FESEM) and Energy dispersive X-ray (EDS) analysis were employed to investigate the phase formation and structure of the films before and after immersion, and the variations of Ca and P contents in SBF were measured by Inductively Coupled Plasma Spectroscopy(ICP). The results show that the as-prepared films were dense, homogeneous, all well-crystallized, and there was a close interracial bond between the film and the substrate. The characterisatics of the grown layer on the surfaces of the HAP/TiO2 films after immersion in SBF for different periods of time are specially discussed.  相似文献   

15.
Application of organic coatings on aluminium alloys is commonplace for corrosion protection. The adhesion of coatings is of great importance to the final protection properties. It is therefore necessary to understand on a molecular level the mechanisms with which a coating is able to bond. In this paper, we explore the possibilities of combining model molecules for a poly(ethylene terephthalate) (PET) type coating, di‐methyl terephthalate (DMT), with differently pre‐treated samples of AA1050 and AA5182 alloys. Bonding is studied by means of Fourier‐transform infrared (FTIR) spectroscopy. Because the type of bonding gives a direction for adhesion of a coated system, we also test (macroscopically) the adhesion of PET coatings with a novel technique: asymmetrical double cantilever beam (ADCB). In this method, a thin knife is used as a wedge on the interface of the alloy and the polymer. The displacement of the crack front as measured from the knife's contact point with the coating is used as an input parameter to obtain the adhesion energy for various systems. We show that there is a relationship between the character of bonding of DMT molecules and adhesion energies of PET on both alloys after pre‐treatments in alkali and acid and boiling in water. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
时海燕  胡仁  林昌健 《电化学》2005,11(4):440-445
控制不同沉积条件制备不同结构形貌的羟基磷灰石涂层,主要获得3种由不同尺寸晶粒构成的直立状、花簇状和多孔状典型形貌特征的涂层;XRD物相分析显示,该涂层主要由结晶良好的羟基磷灰石组成;FT-IR组分分析未检测到其他钙磷盐成分的存在.体外细胞培养试验表明,以上各种形貌的羟基磷灰石涂层均具有良好的生物相容性,但其生物活性则因形貌而异,其中纳米有序多孔状羟基磷灰石涂层表现出最高的生物活性,而花簇状的涂层生物活性相对较低.  相似文献   

17.
Hydroxyapatite coatings can be readily deposited on metal substrates by electrophoretic deposition. However, subsequent sintering is highly problematic owing to the fact that temperatures in excess of 1100°C are required for commercial hydroxyapatite powders to achieve high density. Such temperatures damage the metal and induce metal-catalysed decomposition of the hydroxyapatite. Furthermore, the firing shrinkage of the hydroxyapatite coating on a constraining metal substrate leads to severe cracking. The present study has overcome these problems using a novel approach: the use of aged nanoparticulate hydroxyapatite sols (lower sintering temperature) and a dual coating strategy that overcomes the cracking problem. Dual layers of uncalcined hydroxyapatite (HAp) powder were electrophoretically coated on Ti, Ti6Al4V and 316L stainless steel metal substrates, sintered at 875–1000°C, and characterised by SEM and XRD, and interfacial shear strength measurement. Dual coatings on stainless steel had an average high bond strength (about 23 MPa), and dual coatings on titanium and titanium alloy had moderate strengths (about 14 and 11 MPa, respectively), in comparison with the measured shear strength of bone (35 MPa). SEM and XRD demonstrated that the second layer blended seamlessly with the first and filled the cracks in the first. The superior result on stainless steel is attributed to a more appropriate thermal expansion match with hydroxyapatite, the thinner oxide layer, or a combination of these factors.  相似文献   

18.
The synthesis and development of sodium (Na)-substituted hydroxyapatite (HAp)/chitosan (CS) composite using poly (O-phenylenediamine) (PoPD) coating on 316L SS substrate for improving bioactivity and corrosion protection was studied. The surface of Na-HAp/CS/PoPD bilayer coatings on 316L SS substrate was characterized by diverse analytical techniques. The open circuit potential (OCP) measurement, potentiodynamic polarization, and impedance test revealed that the bilayer coating provides excellent protection to the substrate against the corrosion in the simulated body fluid (SBF) solution. This interior layer of the coating acts as a barrier against the release of metal ions from the substrate, which was confirmed by inductively coupled plasma-atomic emission spectroscopy. Besides, the mechanical properties of the coatings were analyzed. From the obtained results, the bilayer coating exhibited greater mechanical strength than the individual coating. An in vitro bioactivity of the coatings was assessed by immersion in the SBF solution at 7–28 days. The apatite formation of bilayer coatings on 316L SS substrate is found to be more bioactive compared with the Na-HAp, PoPD, and Na-HAp/CS. The in vitro biocompatibility test showed no adverse effects, which was proved by the enhanced biocompatibility of the bilayer coating on 316L SS.  相似文献   

19.
本文以Al和10%体积比Al2O3的混合粉末为原料,使用便携式低压冷喷涂设备,在Q235碳钢基体上喷涂了Al涂层. 测试涂层自腐蚀电位及动电位极化曲线,结合扫描电镜观察涂层表面及截面微观形貌,研究了低压冷喷涂Al涂层在海水中电化学腐蚀行为,并与高压冷喷涂和热喷涂铝涂层的耐蚀性比较. 结果表明,低压冷喷涂铝涂层结构较为致密,其耐蚀性比高压冷喷涂铝涂层的略低,而明显优于热喷涂铝涂层.  相似文献   

20.
Aluminum nanoparticles were coated by epoxy polymer in order to prevent the corrosion reaction. The coverage of the epoxy polymer film was controlled from 0% to 100%, which changed the corrosion rate of nanoparticles quantitatively. The surface of the polymer coating was investigated by transmission electron microscopy (TEM) and atomic force microscopy (AFM), and the corrosion resistance of these nanoparticles was estimated by the wet/dry corrosion test on platinum (Pt) plate with a NaCl solution. From a TEM analysis, 10 mass% polymer‐coated Al particles in the synthesis were almost 100% covered on the surface by a polymer film of 10 nm thick. On the other hand, 3 mass% polymer‐coated Al was partially covered by a film. In the AFM–Kelvin force microscopy, the potential around the Al particles had a relatively low value by the polymer coating, which indicated that the conductivity of the Al was isolated from Pt plate by the polymer. Both the corrosion and H2 evolution reaction rates were quantitatively reduced by the mass% of polymer coating. In the case of 10 mass% coated sample, there was very little corrosion of Al nanoparticles. This fact suggested that the electrochemical reaction was suppressed by the polymer coating. Thus, it was found that the corrosion reaction rate of Al nanoparticles could be quantitatively suppressed by the mass% of epoxy coating. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号