首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hierarchical semicrystalline block copolymer nanoparticles are produced in a segmented gas‐liquid microfluidic reactor with top‐down control of multiscale structural features, including nanoparticle morphologies, sizes, and internal crystallinities. Control of multiscale structure on disparate length scales by a single control variable (flow rate) enables tailoring of drug delivery nanoparticle function including release rates.

  相似文献   


2.
The different mechanisms contributing to adhesion between two polymer surfaces are summarized and described in individual examples, which represent either seminal works in the field of adhesion science or novel approaches to achieve polymer–polymer adhesion. A further objective of this article is the development of new methodologies to achieve strong adhesion between low surface energy polymers.

  相似文献   


3.
A thiofunctional thiazolidine is introduced as a new low‐molar‐mass building block for the introduction of cysteine residues via a thiol‐ene reaction. Allyl‐functional polyglycidol (PG) is used as a model polymer to demonstrate polymer‐analogue functionalization through reaction with the unsaturated side‐chains. A modified trinitrobenzenesulfonic acid (TNBSA) assay is used for the redox‐insensitive quantification and a precise final cysteine content can be predetermined at the polymerization stage. Native chemical ligation at cysteine‐functional PG is performed as a model reaction for a chemoselective peptide modification of this polymer. The three‐step synthesis of the thiofunctional thiazolidine reactant, together with the standard thiol‐ene coupling and the robust quantification assay, broadens the toolbox for thiol‐ene chemistry and offers a generic and straightforward approach to cysteine‐functional materials.

  相似文献   


4.
Poly (N‐isopropylacrylamide) (pNIPAm)‐based hydrogels and hydrogel particles (microgels) have been extensively studied since their discovery and “popularization” a few decades ago. While their uses seem to have no bounds, this Feature Article is focused on their development and application for sensing small molecules, macromolecules, and biomolecules. Hydrogel/microgel‐based photonic materials with order in one, two, or three dimensions are highlighted, which exhibit optical properties that depend on the presence and concentration of various analytes.

  相似文献   


5.
Five three‐component chiral polymers incorporating (S )‐1,1′‐binaphthyl, tetraphenylethene (TPE) and fluorene moieties are designed and synthesized by Pd‐catalyzed Sonogashira reaction. All these polymers show obvious aggregation induced emission enhancement response behavior in the fluorescence emission region of 460–480 nm. Interestingly, three of them show aggregation‐induced circularly polarized luminescence (AICPL) signals in tetrahydrofuran–H2O mixtures. Most importantly, these AICPL signals can be tuned by changing the molar ratios of TPE and fluorene components through fluorescence resonance energy transfer and give the highest glum = ±4.0 × 10−3. This work provides a novel strategy for developing AICPL‐enhanced materials.

  相似文献   


6.
This paper demonstrates the development of pH and thermo‐responsive fluorescent nanoparticles, which are composed of graphene oxide (GO) with BODIPY conjugated PEG, to trigger the detection of cancer cells through imaging based on intracellular accommodation. Responsiveness to pH is studied using atomic force microscopy and apparent thickness differences are seen with changes in pH. Confocal images of the nanoparticles (NPs) exhibit remarkably bright fluorescence at lysosomal pH, while no fluorescence is observed under a physiological environment, making the NPs a novel fluorescent probe. The NPs are able to accumulate the hydrophobic anticancer drug DOX due to the hydrophobic surface of GO and show excellent drug release behavior. Therefore, the NPs developed are novel candidates for a fluorescent probe to identify cancer cells and a drug carrier for cancer therapy.

  相似文献   


7.
An alkyne‐functionalized ruthenium(II) bis‐terpyridine complex is directly copolymerized with phenylacetylene by alkyne polymerization. The polymer is characterized by size‐exclusion chromatography (SEC), 1H NMR spectroscopy, cyclic voltammetry (CV) measurements, and thermal analysis. The photophysical properties of the polymer are studied by UV–vis absorption spectroscopy. In addition, spectro‐electrochemical measurements are carried out. Time‐resolved luminescence lifetime decay curves show an enhanced lifetime of the metal complex attached to the conjugated polymer backbone compared with the Ru(tpy)22+ model complex.

  相似文献   


8.
The first and second generations of dendronized polyprolines P3G1 , P3G2, and P4G1 are prepared via the “grafting to” route, and their thermoresponsive properties and helical conformations investigated. High molar masses of polyproline main chains carrying azido groups are achieved first by polycondensation of peptide precursors through activated ester strategy. Oligoethylene glycol dendrons cored with alkyne are then attached onto the main chains through click reaction. These polymers are found to be thermoresponsive. Circular dichroism spectroscopy investigation indicates, in contrast to P3G2 and P4G1 which adopt the expected PPII conformation in aqueous conditions, P3G1 prefers to adopt PPI helical conformation, and this conformation is stable within the measured time period and temperature range.

  相似文献   


9.
Optically active helical substituted (co)polyacetylenes containing pendent pyrene groups are prepared and then noncovalently immobilized on graphene via ππ interactions. The resulting graphene composite is characterized by XRD, FTIR, Raman, circular dichroism, UV‐vis absorption, TEM, TGA, and fluorescent spectroscopy techniques. The helical polyacetylene endows graphene with the desired optical activity. Also interestingly, the dispersibility of the functionalized graphene in tetrahydrofuran is remarkably improved due to the presence of the helical polymer chains. The present methodology opens new opportunities and serves as a versatile platform toward preparing novel graphene‐based materials.

  相似文献   


10.
Multi‐component polymer nanomaterials have attracted great attention because of their applications in areas such as biomedicine, tissue engineering, and organic solar cells. The precise control over the morphologies of multi‐component polymer nanomaterials, however, is still a great challenge. In this work, the fabrication of poly(methyl methacrylate)(PMMA)/poly­styrene (PS) nanostructures that contain PMMA shells and encapsulated PS nanospheres is studied. The nanostructures are prepared using a triple solution wetting method with anodic aluminum oxide (AAO) templates. The nanopores of the templates are wetted sequentially by PS solutions in dimethylformamide (DMF), PMMA solutions in acetic acid, and water. The compositions and morphologies of the nanostructures are controlled by the interactions between the polymers, solvents, and AAO walls. This work not only presents a feasible method to prepare multi‐component polymer nanomaterials, but also leads to a better understanding of polymer‐solvent interactions in confined geometries.

  相似文献   


11.
Surface‐active polymers that display nonfouling properties and carry binding groups that can adsorb onto different substrates are highly desirable. We present a postmodification protocol of an active‐ester‐containing polymer that allows the creation of such a versatile platform. Poly(pentafluorophenyl acrylate) has been postmodified with a fixed grafting ratio of a nonfouling function (mPEG) and various combinations of functional groups, such as amine, silane and catechol, which can provide strong affinity to two model substrates: SiO2 and TiO2. Adsorption, stability and resistance to nonspecific protein adsorption of the polymer films were studied. A polymer was obtained that maintained its surface functionality under a variety of harsh conditions. EG surface‐density calculations show that this strategy generates a denser packing when both negatively and positively charged groups are present within the backbone, and readily allows the fabrication of a broad combinatorial matrix.

  相似文献   


12.
The polymerization of ocimene has been first achieved by half‐sandwich rare‐earth metal dialkyl complexes in combination with activator and AliBu3. The regio‐ and stereoselectivity in the ocimene polymerization can be controlled by tuning the cyclopentadienyl ligand and the central metal of the complex. The chiral cyclopentadienyl‐ligated Sc complex 1 prepares syndiotactic cis‐1,4‐polyocimene (cis‐1,4‐selectivity up to 100%, rrrr = 100%), while the corresponding Lu, Y, and Dy complexes 2 – 4 and the achiral pentamethylcyclopentadienyl Sc, Lu, and Y complexes 5 – 7 afford isotactic trans‐1,2‐polyocimenes (trans‐1,2‐selectivity up to 100%, mm = 100%).

  相似文献   


13.
Suspension polymerization has been extensively utilized with vinyl monomers to prepare vinyl‐polymer microparticles (μm size; denoted MPs) with a variety of morphologies and significant applications. However, suspension polymerization of acetylenic monomers has remained a big challenge. This communication reports the first methodology for performing suspension polymerizations of acetylenic monomers, from which optically active microparticles (OAMPs) are constructed exclusively from helical substituted polyacetylenes. Chiral monomer (M1) and achiral monomer (M2) separately underwent suspension polymerization at room temperature in aqueous media in the presence of Rh‐based catalyst with poly(vinyl alcohol) as a stabilizer, providing MPs (200∼700 mm) in high yield (>80%). The obtained OAMPs, both crosslinked and non‐crosslinked, were characterized by SEM, polarimetry, circular dichroism, and UV‐vis spectroscopy. The chiral substituted polyacetylene chains constituting the MPs were found to adopt helices of predominantly one‐handed screw sense, affording the particles with pronounced optical activity. The MPs derived from achiral M2 exhibited optical inactivity. The present study opens up new opportunities for preparing novel (non‐)crosslinked microparticles derived from acetylenic monomers.

  相似文献   


14.
A convenient synthesis of sustainable polyamides, which contain side groups and stereocenters, starting from the biobased small terpene β‐pinene is reported. The polyamides, which are obtained via the pinene‐based lactam via ring‐opening polymerization, show excellent thermal properties, rendering this approach very interesting for the utilization of novel biobased and structurally significant high‐performance polymers and materials. Polymer masses and yields are shown to be dependent on different parameters, and the stereoinformation of the lactam monomer can thus be transferred into the polymer chain. In addition, another lactam side product can also be transformed to polyamides.

  相似文献   


15.
Triptycene‐based micorporous polymer is functionalized with CO2‐philic tetrazole moieties via ZnCl2‐catalyzed post‐polymerization. Gas adsorption experiments indicate that it possesses high CO2 uptake capacity, reaching 134 cm3 g−1 (26.5 wt%) at 1.0 bar and 273 K, along with high selectivity towards CO2 over N2 and CH4. The porous polymeric networks present the promising potentials as efficient adsorbents in clean energy applications.

  相似文献   


16.
Synthesis of a cyclodextrin (CD) polyrotaxane is achieved for the first time by simultaneous free radical polymerization of isoprene, threading by CD, and stoppering by copolymerization of styrene. This reaction is performed in an eco‐friendly manner in an aqueous medium similar to classical emulsion polymerization. Threaded CD rings of the polyrotaxane are cross‐linked by hexamethylene diisocyanate, leading to highly elastic slide‐ring gels.

  相似文献   


17.
Polydopamine‐based coatings are fabricated via an electric field‐accelerating and ‐directing codeposition process of polydopamine with charged polymers such as polycations, polyanions, and polyzwitterions. The coatings are uniform and smooth on various substrates, especially on those adhesion‐resistant materials including poly(vinylidene fluoride) and poly(tetrafluoroethylene) membranes. Moreover, this electric field‐directed deposition method can be applied to facilely prepare Janus membranes with asymmetric chemistry and wettability.

  相似文献   


18.
Acetone containing tetraalkylammonium chloride is found to be an efficient solvent for cellulose. The addition of an amount of 10 mol% (based on acetone) of well‐soluble salt triethyloctylammonium chloride (Et3OctN Cl) adjusts the solvent's properties (increases the polarity) to promote cellulose dissolution. Cellulose solutions in acetone/Et3OctN Cl have the lowest viscosity reported for comparable aprotic solutions making it a promising system for shaping processes and homogeneous chemical modification of the biopolymer. Recovery of the polymer and recycling of the solvent components can be easily achieved.

  相似文献   


19.
A photocleavable terpolymer hydrogel cross‐linked with o‐nitrobenzyl derivative cross‐linker is shown to be capable of self‐shaping without losing its physical integrity and robustness due to spontaneous asymmetric swelling of network caused by UV‐light‐induced gradient cleavage of chemical cross‐linkages. The continuum model and finite element method are used to elucidate the curling mechanism underlying. Remarkably, based on the self‐changing principle, the photosensitive hydrogels can be developed as photoprinting soft and wet platforms onto which specific 3D characters and images are faithfully duplicated in macro/microscale without contact by UV light irradiation under the cover of customized photomasks. Importantly, a quick response (QR) code is accurately printed on the photoactive hydrogel for the first time. Scanning QR code with a smartphone can quickly connect to a web page. This photoactive hydrogel is promising to be a new printing or recording material.

  相似文献   


20.
The recovery of ammonium from urine requires distinguishing and excluding sodium and potassium. A polymer inclusion membrane selective for ammonium is developed using an ionophore based on pyrazole substituted benzene. The interactions of the components are studied, as well as their effect on transport and selectivity. Spectroscopic and thermogravimetric measurements show no extensive physical interactions of the components, and that the plasticizer reduces the intermolecular forces (rigidity) of the membrane. The ionophore turns the membrane more rigid, although it increases its swelling degree and therefore the affinity of cations. A ratio of plasticizer (DEHP) and polymer (PVC) of 1:3 in mass gives the highest ammonium flux. Tested contents of ionophore (2 and 5 wt%) show that the higher the content of the ionophore, the fastest the flux is (7.5 × 10−3 mmol cm−2 h−1). Selectivity of NH4+ over Na+ and over K+ is reduced from 13.07 to 9.33 and from 14.15 to 9.57 correspondingly.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号