首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
DESIRS is a new undulator‐based VUV beamline on the 2.75 GeV storage ring SOLEIL (France) optimized for gas‐phase studies of molecular and electronic structures, reactivity and polarization‐dependent photodynamics on model or actual systems encountered in the universe, atmosphere and biosphere. It is equipped with two dedicated endstations: a VUV Fourier‐transform spectrometer (FTS) for ultra‐high‐resolution absorption spectroscopy (resolving power up to 106) and an electron/ion imaging coincidence spectrometer. The photon characteristics necessary to fulfill its scientific mission are: high flux in the 5–40 eV range, high spectral purity, high resolution, and variable and well calibrated polarizations. The photon source is a 10 m‐long pure electromagnetic variable‐polarization undulator producing light from the very near UV up to 40 eV on the fundamental emission with tailored elliptical polarization allowing fully calibrated quasi‐perfect horizontal, vertical and circular polarizations, as measured with an in situ VUV polarimeter with absolute polarization rates close to unity, to be obtained at the sample location. The optical design includes a beam waist allowing the implementation of a gas filter to suppress the undulator high harmonics. This harmonic‐free radiation can be steered toward the FTS for absorption experiments, or go through a highly efficient pre‐focusing optical system, based on a toroidal mirror and a reflective corrector plate similar to a Schmidt plate. The synchrotron radiation then enters a 6.65 m Eagle off‐plane normal‐incidence monochromator equipped with four gratings with different groove densities, from 200 to 4300 lines mm?1, allowing the flux‐to‐resolution trade‐off to be smoothly adjusted. The measured ultimate instrumental resolving powers are 124000 (174 µeV) around 21 eV and 250000 (54 µeV) around 13 eV, while the typical measured flux is in the 1010–1011 photons s?1 range in a 1/50000 bandwidth, and 1012–1013 photons s?1 in a 1/1000 bandwidth, which is very satisfactory although slightly below optical simulations. All of these features make DESIRS a state‐of‐the‐art VUV beamline for spectroscopy and dichroism open to a broad scientific community.  相似文献   

2.
Multilayer optical elements for hard X‐rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite‐element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X‐ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanometers. Most multilayers are coated on silicon substrates of typical size 60 mm × 60 mm × 100–300 mm. The high aspect ratio between the size of the optics and the thickness of the multilayer (107) can lead to a huge number of elements for the finite‐element model. For instance, meshing by the size of the layers will require more than 1016 elements, which is an impossible task for present‐day computers. Conversely, meshing by the size of the substrate will produce a too high element shape ratio (element geometry width/height > 106), which causes low solution accuracy; and the number of elements is still very large (106). In this work, by use of ANSYS layer‐functioned elements, a thermal‐structural FEA model has been implemented for multilayer X‐ray optics. The possible number of layers that can be computed by presently available computers is increased considerably.  相似文献   

3.
An integrated photonic‐on‐a‐chip device based on a single organic‐inorganic di‐ureasil hybrid was fabricated for optical waveguide and temperature sensing. The device is composed by a thermal actuated Mach‐Zehnder (MZ) interferometer operating with a switching power of 0.011 W and a maximum temperature difference between branches of 0.89 ºC. The MZ interferometer is covered by a Eu3+/Tb3+ co‐doped di‐ureasil luminescent molecular thermometer with a temperature uncertainty of 0.1ºC and a spatial resolution of 13 µm. This is an uncommon example in which the same material (an organic‐inorganic hybrid) that is used to fabricate a particular device (a thermal‐actuated MZ interferometer) is also used to measure one of the device intrinsic properties (the operating temperature). The photonic‐on‐a‐chip example discussed here can be applied to sense temperature gradients with high resolution (10−3 ºC·µm−1) in chip‐scale heat engines or refrigerators, magnetic nanocontacts and energy‐harvesting machines.  相似文献   

4.
X‐ray detectors that combine two‐dimensional spatial resolution with a high time resolution are needed in numerous applications of synchrotron radiation. Most detectors with this combination of capabilities are based on semiconductor technology and are therefore limited in size. Furthermore, the time resolution is often realised through rapid time‐gating of the acquisition, followed by a slower readout. Here, a detector technology is realised based on relatively inexpensive microchannel plates that uses GHz waveform sampling for a millimeter‐scale spatial resolution and better than 100 ps time resolution. The technology is capable of continuous streaming of time‐ and location‐tagged events at rates greater than 107 events per cm2. Time‐gating can be used for improved dynamic range.  相似文献   

5.
There is a growing interest in using quantum dots (QDs) and metallic nanoparticles (NPs), both for luminescence enhancement and surface‐enhanced Raman scattering (SERS). Here, we study the electromagnetic‐field enhancement that can be generated by lead‐sulfide (PbS) QDs using three‐dimensional finite‐element simulations. We investigate the field enhancement associated with combinations of PbS QDs with metallic NPs and substrates. The results show that high field enhancement can be achieved by combining PbS QDs with metallic NPs of larger sizes. The ideal size for Ag NPs is 25 nm, providing a SERS enhancement factor of ~5*108 for light polarization parallel to the NP dimer axis and a gap of 0.6 nm. For Au NPs, the bigger the size, the higher is the field for the studied diameters, up to 50 nm. The near‐field values for PbS QDs above metallic substrates were found to be lower compared to the case of PbS QD‐metal NP dimers. This study provides the understanding for the design and application of QDs for the enhancement of near‐field phenomena. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
At the National Synchrotron Radiation Research Center (NSRRC), which operates a 1.5 GeV storage ring, a dedicated small‐angle X‐ray scattering (SAXS) beamline has been installed with an in‐achromat superconducting wiggler insertion device of peak magnetic field 3.1 T. The vertical beam divergence from the X‐ray source is reduced significantly by a collimating mirror. Subsequently the beam is selectively monochromated by a double Si(111) crystal monochromator with high energy resolution (ΔE/E? 2 × 10?4) in the energy range 5–23 keV, or by a double Mo/B4C multilayer monochromator for 10–30 times higher flux (~1011 photons s?1) in the 6–15 keV range. These two monochromators are incorporated into one rotating cradle for fast exchange. The monochromated beam is focused by a toroidal mirror with 1:1 focusing for a small beam divergence and a beam size of ~0.9 mm × 0.3 mm (horizontal × vertical) at the focus point located 26.5 m from the radiation source. A plane mirror installed after the toroidal mirror is selectively used to deflect the beam downwards for grazing‐incidence SAXS (GISAXS) from liquid surfaces. Two online beam‐position monitors separated by 8 m provide an efficient feedback control for an overall beam‐position stability in the 10 µm range. The beam features measured, including the flux density, energy resolution, size and divergence, are consistent with those calculated using the ray‐tracing program SHADOW. With the deflectable beam of relatively high energy resolution and high flux, the new beamline meets the requirements for a wide range of SAXS applications, including anomalous SAXS for multiphase nanoparticles (e.g. semiconductor core‐shell quantum dots) and GISAXS from liquid surfaces.  相似文献   

7.
A Johann‐type spectrometer for the study of high‐energy resolution fluorescence‐detected X‐ray absorption spectroscopy, X‐ray emission spectroscopy and resonant inelastic X‐ray scattering has been developed at BL14W1 X‐ray absorption fine structure spectroscopy beamline of Shanghai Synchrotron Radiation Facility. The spectrometer consists of three crystal analyzers mounted on a vertical motion stage. The instrument is scanned vertically and covers the Bragg angle range of 71.5–88°. The energy resolution of the spectrometer ranges from sub‐eV to a few eV. The spectrometer has a solid angle of about 1.87 × 0?3 of 4π sr, and the overall photons acquired by the detector could be 105 counts per second for the standard sample. The performances of the spectrometer are illustrated by the three experiments that are difficult to perform with the conventional absorption or emission spectroscopy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The applicability of surface‐enhanced Raman spectroscopy is demonstrated to probe the adsorption behavior of individual molecules on a Ag electrode. High‐quality SERS spectra of (R)‐di‐2‐naphthylprolinol (DNP) were obtained from ultradilute solutions (10−12 M ) on the Ag‐nanoparticle‐modified Ag electrode, which is attributed to the high electromagnetic (EM) effect of the SERS‐active system as well as to the strong adsorption and interaction of DNP molecules with Ag. The stable SERS spectra present remarkable potential dependence, which gives evidence for the behavior of individual DNP molecules on the Ag surface. Based on statistical analysis for the probability of DNP molecules located in ‘hot spots’, we propose an SERS mechanism for individual molecules in the electrode system, in combination with the hot‐spot model and orientation of the probe molecules. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The fundamental performance of microangiography has been evaluated using the S‐band linac‐based inverse‐Compton scattering X‐ray (iCSX) method to determine how many photons would be required to apply iCSX to human microangiography. ICSX is characterized by its quasi‐monochromatic nature and small focus size which are fundamental requirements for microangiography. However, the current iCSX source does not have sufficient flux for microangiography in clinical settings. It was determined whether S‐band compact linac‐based iCSX can visualize small vessels of excised animal organs, and the amount of X‐ray photons required for real time microangiography in clinical settings was estimated. The iCSX coupled with a high‐gain avalanche rushing amorphous photoconductor camera could visualize a resolution chart with only a single iCSX pulse of ~3 ps duration; the resolution was estimated to be ~500 µm. The iCSX coupled with an X‐ray cooled charge‐coupled device image sensor camera visualized seventh‐order vascular branches (80 µm in diameter) of a rabbit ear by accumulating the images for 5 and 30 min, corresponding to irradiation of 3000 and 18000 iCSX pulses, respectively. The S‐band linac‐based iCSX visualized microvessels by accumulating the images. An iCSX source with a photon number of 3.6 × 103–5.4 × 104 times greater than that used in this study may enable visualizing microvessels of human fingertips even in clinical settings.  相似文献   

10.
Soft‐X‐ray angle‐resolved photoelectron spectroscopy (ARPES) with photon energies around 1 keV combines the momentum space resolution with increasing probing depth. The concepts and technical realisation of the new soft‐X‐ray ARPES endstation at the ADRESS beamline of SLS are described. The experimental geometry of the endstation is characterized by grazing X‐ray incidence on the sample to increase the photoyield and vertical orientation of the measurement plane. The vacuum chambers adopt a radial layout allowing most efficient sample transfer. High accuracy of the angular resolution is ensured by alignment strategies focused on precise matching of the X‐ray beam and optical axis of the analyzer. The high photon flux of up to 1013 photons s?1 (0.01% bandwidth)?1 delivered by the beamline combined with the optimized experimental geometry break through the dramatic loss of the valence band photoexcitation cross section at soft‐X‐ray energies. ARPES images with energy resolution up to a few tens of meV are typically acquired on the time scale of minutes. A few application examples illustrate the power of our advanced soft‐X‐ray ARPES instrumentation to explore the electronic structure of bulk crystals with resolution in three‐dimensional momentum, access buried heterostructures and study elemental composition of the valence states using resonant excitation.  相似文献   

11.
In this work, we rationally designed an efficient template‐free synthetic strategy to fabricate hierarchical mesoporous hollow ZnMn2O4 sub‐microspheres (HZSMs) constructed entirely from nanoparticle (NP) building blocks of size ≈15 nm. The well‐known inside‐out Ostwald ripening process was tentatively proposed to shed light on the formation mechanism of the mesoporous hollow nano‐/microarchitecture. In favor of the intrinsic structural advantages, these resulting HZSMs exhibited superior electrochemical lithium‐storage performance with high specific capacity, excellent cyclability, and good rate capability when evaluated as an anode material for advanced Li‐ion batteries (LIBs). The excellent electrochemical performance should be reasonably ascribed to the porous and hollow structure of the unique HZSMs with nanoscale subunits, which reduced the diffusion length for Li+ ions, improved the kinetic process and enhanced the structural integrity with sufficient void space for tolerating the volume variation during the Li+ insertion/extraction. These results further revealed that the as‐prepared mesoporous HZSMs would be a promising anode for high‐performance LIBs.  相似文献   

12.
A new ultrahigh‐energy‐resolution and wide‐energy‐range soft X‐ray beamline has been designed and is under construction at the Shanghai Synchrotron Radiation Facility. The beamline has two branches: one dedicated to angle‐resolved photoemission spectroscopy (ARPES) and the other to photoelectron emission microscopy (PEEM). The two branches share the same plane‐grating monochromator, which is equipped with four variable‐line‐spacing gratings and covers the 20–2000 eV energy range. Two elliptically polarized undulators are employed to provide photons with variable polarization, linear in every inclination and circular. The expected energy resolution is approximately 10 meV at 1000 eV with a flux of more than 3 × 1010 photons s?1 at the ARPES sample positions. The refocusing of both branches is based on Kirkpatrick–Baez pairs. The expected spot sizes when using a 10 µm exit slit are 15 µm × 5 µm (horizontal × vertical FWHM) at the ARPES station and 10 µm × 5 µm (horizontal × vertical FWHM) at the PEEM station. The use of plane optical elements upstream of the exit slit, a variable‐line‐spacing grating and a pre‐mirror in the monochromator that allows the influence of the thermal deformation to be eliminated are essential for achieving the ultrahigh‐energy resolution.  相似文献   

13.
For decades, there has been extensive research on exploring fundamental physical mechanisms for strong and fast optical nonlinearities. One of the important nonlinear‐optical mechanisms is multiphoton absorption which has a wide range of photonic applications. Herein, a theoretical model is proposed for three‐photon absorption (3PA) in monolayer MoS2. The model shows that the 3PA coefficients are on the order of 0.1 cm3/GW2. As compared to bulk semiconductors, these coefficients are enhanced by several orders of magnitude due to excitonic effects. Such exciton‐enhanced 3PA is validated by light‐intensity‐dependent photocurrent measurements on a monolayer MoS2 photodetector with femtosecond laser pulses. These results lay both theoretical and experimental foundation for developing sensitive near‐infrared MoS2‐based three‐photon detectors.  相似文献   

14.
Recently, CdZnTe (CZT) detectors have been widely proposed and developed for room‐temperature X‐ray spectroscopy even at high fluxes, and great efforts have been made on both the device and the crystal growth technologies. In this work, the performance of new travelling‐heater‐method (THM)‐grown CZT detectors, recently developed at IMEM‐CNR Parma, Italy, is presented. Thick planar detectors (3 mm thick) with gold electroless contacts were realised, with a planar cathode covering the detector surface (4.1 mm × 4.1 mm) and a central anode (2 mm × 2 mm) surrounded by a guard‐ring electrode. The detectors, characterized by low leakage currents at room temperature (4.7 nA cm?2 at 1000 V cm?1), allow good room‐temperature operation even at high bias voltages (>7000 V cm?1). At low rates (200 counts s?1), the detectors exhibit an energy resolution around 4% FWHM at 59.5 keV (241Am source) up to 2200 V, by using commercial front‐end electronics (A250F/NF charge‐sensitive preamplifier, Amptek, USA; nominal equivalent noise charge of 100 electrons RMS). At high rates (1 Mcounts s?1), the detectors, coupled to a custom‐designed digital pulse processing electronics developed at DiFC of University of Palermo (Italy), show low spectroscopic degradations: energy resolution values of 8% and 9.7% FWHM at 59.5 keV (241Am source) were measured, with throughputs of 0.4% and 60% at 1 Mcounts s?1, respectively. An energy resolution of 7.7% FWHM at 122.1 keV (57Co source) with a throughput of 50% was obtained at 550 kcounts s?1 (energy resolution of 3.2% at low rate). These activities are in the framework of an Italian research project on the development of energy‐resolved photon‐counting systems for high‐flux energy‐resolved X‐ray imaging.  相似文献   

15.
Combined small‐ and wide‐angle X‐ray scattering (SAXS/WAXS) is a powerful technique for the study of materials at length scales ranging from atomic/molecular sizes (a few angstroms) to the mesoscopic regime (~1 nm to ~1 µm). A set‐up to apply this technique at high X‐ray energies (E > 50 keV) has been developed. Hard X‐rays permit the execution of at least three classes of investigations that are significantly more difficult to perform at standard X‐ray energies (8–20 keV): (i) in situ strain analysis revealing anisotropic strain behaviour both at the atomic (WAXS) as well as at the mesoscopic (SAXS) length scales, (ii) acquisition of WAXS patterns to very large q (>20 Å?1) thus allowing atomic pair distribution function analysis (SAXS/PDF) of micro‐ and nano‐structured materials, and (iii) utilization of complex sample environments involving thick X‐ray windows and/or samples that can be penetrated only by high‐energy X‐rays. Using the reported set‐up a time resolution of approximately two seconds was demonstrated. It is planned to further improve this time resolution in the near future.  相似文献   

16.
Inelastic X‐ray scattering instruments in operation at third‐generation synchrotron radiation facilities are based on backreflections from perfect silicon crystals. This concept reaches back to the very beginnings of high‐energy‐resolution X‐ray spectroscopy and has several advantages but also some inherent drawbacks. In this paper an alternate path is investigated using a different concept, the `M4 instrument'. It consists of a combination of two in‐line high‐resolution monochromators, focusing mirrors and collimating mirrors. Design choices and performance estimates in comparison with existing conventional inelastic X‐ray scattering instruments are presented.  相似文献   

17.
The IMCA‐CAT bending‐magnet beamline was upgraded with a collimating mirror in order to achieve the energy resolution required to conduct high‐quality multi‐ and single‐wavelength anomalous diffraction (MAD/SAD) experiments without sacrificing beamline flux throughput. Following the upgrade, the bending‐magnet beamline achieves a flux of 8 × 1011 photons s?1 at 1 Å wavelength, at a beamline aperture of 1.5 mrad (horizontal) × 86 µrad (vertical), with energy resolution (limited mostly by the intrinsic resolution of the monochromator optics) δE/E = 1.5 × 10?4 (at 10 kV). The beamline operates in a dynamic range of 7.5–17.5 keV and delivers to the sample focused beam of size (FWHM) 240 µm (horizontally) × 160 µm (vertically). The performance of the 17‐BM beamline optics and its deviation from ideally shaped optics is evaluated in the context of the requirements imposed by the needs of protein crystallography experiments. An assessment of flux losses is given in relation to the (geometric) properties of major beamline components.  相似文献   

18.
On‐chip‐triggered all‐optical switching is a key component of ultrahigh‐speed and ultrawide‐band information processing chips. 1 - 4 This switching technique, the operating states of which are triggered by a remote control light, paves the way for the realization of cascaded and complicated logic processing circuits and quantum solid chips. Here, a strategy is reported to realize on‐chip remotely‐triggered, ultralow‐power, ultrafast, and nanoscale all‐optical switching with high switching efficiency in integrated photonic circuits. It is based on control‐light induced dynamic modulation of the coupling properties of two remotely‐coupled silicon photonic crystal nanocavities, and extremely large optical nonlinearity enhancement associated with epsilon‐near‐zero multi‐component nanocomposite achieved through dispersion engineering. Compared with previous reports of on‐chip direct‐triggered all‐optical switching, the threshold control intensity, 560 kW/cm2, is reduced by four orders of magnitude, while maintaining ultrafast switching time of 15 ps. This not only provides a strategy to construct photonic materials with ultrafast and large third‐order nonlinearity, but also offers an on‐chip platform for the fundamental study of nonlinear optics.  相似文献   

19.
Novel CO2‐responsive conductive polymer particles based on poly(N‐(3‐amidino)‐aniline) (or PNAAN) are reported in this work. A CO2‐responsive N‐(3‐amidino)‐aniline (NAAN) monomer is firstly synthesized with the pendant amidine group at the meta‐position of aniline (AN) and subsequently polymerized into the PNAAN polymer by chemical oxidation. Self‐assembly of PNAAN in turn forms the polymer particles. In the strong or weak acid media, the amidine group protonates into cationic amidinium and self‐stabilizes the PNAAN particles without the use of any stabilizers. The reaction media are found to affect the polymerization rate and self‐assembly of particles, and hence the size and size distribution of the resultant particles. The particles synthesized in strong basic media show CO2‐responsvie properties since the H+ released by dissolved CO2 (dCO2) can protonate the amidine group into hydrophilic amidinium group and result in swelling of the PNAAN particles. Zeta‐potential measurements show the reversible change of particle surface charges in the presence and absence of dCO2. Dynamic light scattering (DLS) measurements show the particle size linearly changed with dCO2 concentration in the range of 5 × 10?4 and 2.5 × 10?2 atm. This is the first reported CO2‐responsive polyaniline (PANI) particles for dCO2 sensing or reversible fixation of CO2.  相似文献   

20.
In this article, a novel technique for the fabrication of surface enhanced Raman scattering (SERS) active silver clusters on glassy carbon (GC) has been proposed. It was found that silver clusters could be formed on a layer of positively charged poly(diallyldimethylammonium) (PDDA) anchored to a carbon surface by 4‐aminobenzoic acid when a drop containing silver nanoparticles was deposited on it. The characteristics of the obtained silver clusters have been investigated by atomic force microscopy (AFM), SERS and an SERS‐based Raman mapping technique in the form of line scanning. The AFM image shows that the silver clusters consist of several silver nanoparticles and the size of the clusters is in the range 80–100 nm. The SERS spectra of different concentrations of rhodamine 6G (R6G) on the silver clusters were obtained and compared with those from a silver colloid. The apparent enhancement factor (AEF) was estimated to be as large as 3.1 × 104 relative to silver colloid, which might have resulted from the presence of ‘hot‐spots’ at the silver clusters, providing a highly localized electromagnetic field for the large enhancement of the SERS spectra of R6G. The minimum electromagnetic enhancement factor (EEF) is estimated to be 5.4 × 107 by comparison with the SERS spectra of R6G on the silver clusters and on the bare GC surface. SERS‐based Raman mapping technique in the form of line scanning further illustrates the good SERS activity and reproducibility on the silver clusters. Finally, 4‐mercaptopyridine (4‐Mpy) was chosen as an analyte and the lowest detected concentration was investigated by the SERS‐active silver clusters. A concentration of 1.6 × 10−10 M 4‐Mpy could be detected with the SERS‐active silver clusters, showing the great potential of the technique in practical applications of microanalysis with high sensitivity. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号