首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Master oscillator power amplifier (MOPA) technology has been widely used in high-power or ultrashort-pulse fiber laser systems because the shape of the laser pulse can be easily adjusted. Usually, the first amplification stage of a 1064 nm fiber laser uses the core-pumped Yb-doped fiber amplifier (YDFA); however, the gain or output power is limited owing to the strong amplifier spontaneous emission (ASE) in the 1030 nm band. This paper presents the improved output power in an YDFA by inserting an additional unpumped Yb-doped fiber, which absorbs the lost backward ASE emitted from the pump end. We achieved an output power increase of more than 10% in a low-power signal, and the increase in output power decreased as the signal power increased. Moreover, the insertion of an additional unpumped Yb-doped fiber restricted the unwanted 1030 nm lasing in a low-power signal.  相似文献   

2.
The stimulated Brillouin scattering(SBS) threshold enhancement factor in a pure white noise linewidth broadening Yb-doped fiber amplifier(YDFA) with a short large mode area fiber is theoretically and experimentally studied.We demonstrate a 1064.08 nm,11.6 GHz linewidth,1.5kW output power YDFA with an SBS threshold enhancement of ~57(26 W SBS threshold with single frequency seed).The output beam is near-diffraction limited with a beam quality factor of M~2 = 1.15 and a slope efficiency of up to 87%.No SBS or stimulated Raman scattering effects are observed in the whole power range.Further power scaling is limited by the available pump power in our system.  相似文献   

3.
A high power continuous-wave single-frequency green fiber laser by second-harmonic generation of a Yb-doped fiber amplifier(YDFA)is developed.A linearly polarized single-mode fiber amplifier produces a 60 W infrared laser at 1064 nm with a 103 W incident diode pump laser at 976 nm,corresponding to an optical conversion efficiency of 58%.An external bow-tie enhancement cavity incorporating a noncritically phase-matched lithium triborate crystal is employed for second-harmonic generation.A 33.2 W laser at 532 nm is obtained with a 45 W incident 1064 nm fundamental laser,corresponding to a conversion efficiency of 74%.  相似文献   

4.
进行了非保偏放大器与保偏放大器的相干合成的实验研究。通过随机并行梯度下降(SPGD)算法对非保偏放大器进行偏振自适应控制,使非保偏放大器输出激光的消光比达到11.5 dB,与保偏放大器在同一偏振方向上的光功率占总功率的93.4%。利用单抖动法进行非保偏放大器与保偏放大器的主动相位控制,实现相干合成。实验结果表明:SPGD算法能够有效实现偏振自适应控制,偏振自适应控制前后相干合成远场的条纹对比度从80.1%提高到87.2%,相干合成的效果提升明显;通过增加参与合成的放大器路数,并在各路激光中引入多级功率放大器,能够得到更高的合成功率输出。  相似文献   

5.
主振荡功率放大(main oscillation power amplification, MOPA)结构由于其光束质量良好和参数可调的优点,已成为高功率光纤激光器的主流设计之一。为了改善高功率掺镱光纤激光器(ytterbium-doped fiber laser, YDFL)的输出性能,提高系统的光-光转换效率,文中报道了一台基于915 nm泵浦激光器和双包层掺镱光纤(ytterbium-doped fiber, YDF)的MOPA结构全光纤高功率激光器。该高功率光纤激光器由电调制激光二极管(laser diode, LD)泵浦的种子激光器和掺镱光纤放大器(ytterbium-doped fiber amplifier, YDFA)组成。连续光(continuous wave, CW)工作模式下,激光种子源经过YDFA后,实现了中心波长为1 069.96 nm的激光输出,最大平均输出功率可达945.9 W,MOPA激光器整机的斜率效率高达74.12%,具有良好的稳健性。该研究方案对研制高功率MOPA光纤激光器具有参考意义。  相似文献   

6.
We demonstrate the generation of nanosecond and multikilowatt peak-power pulses in a double-clad Yb-doped fiber amplifier seeded by a spectrally narrowed gain-switched laser diode. Injected pulses with 100 ns duration were simultaneously compressed and amplified by the combination of high amplifier gain and stimulated Brillouin scattering. A maximum peak power of 20 kW has been obtained, corresponding to a single-pass gain of +57 dB in terms of peak power. Part of this output signal was also converted into IR continuum light by splicing a length of single-mode fiber at the end of the fiber amplifier.  相似文献   

7.
掺镱光纤放大器的啁啾脉冲失谐放大特性   总被引:5,自引:0,他引:5       下载免费PDF全文
 研究了掺镱光纤放大器对中心频率为1 053nm的啁啾脉冲放大特性,发现针对高斯或超高斯脉冲,采用合适的带宽及入射光强能够使增益饱和和失谐放大相互消弱,从而得到一个良好的放大脉冲形状。计算了掺镱光纤放大器失谐放大带来的相位调制,发现对压缩质量影响较小。  相似文献   

8.
We demonstrate a tuneable laser operating in the 1-1.1 μm wavelength region with a tuning range of 43 nm (FWHM), an output power of 19 mW and coherence length of 14 mm. The source is based on a master laser consisting of a cavity tuned ring configuration with a fibre Fabry-Perot filter used as a tuning element and a semiconductor amplifier as gain medium. The output of the master laser is subsequently power boosted using an Ytterbium doped fibre amplifier (YDFA). In addition to providing a power boost, we demonstrate that by tailoring the gain spectrum of the YDFA it is possible to increase the FWHM scanning range by 7 nm compared to that of the master laser.  相似文献   

9.
The double-pass erbium-doped zirconia fiber amplifier (EDZFA) is proposed and demonstrated to provide a wide-band amplification as well as flat-gain operation in both the C- and L-band regions using only a single-gain medium. The proposed amplifier utilizes an erbium-doped zirconia fiber (EDZF) with erbium ion concentration of 2800 ppm as a gain medium. The medium is fabricated in a ternary glass host, zirconia-yttria-aluminum codoped silica fiber through solution doping technique along with modified chemical vapor deposition (MCVD). Compared to a single-pass operation, the double-pass EDZFA shows a better gain performance. At input signal power of 0 dBm and the optimum EDZF length of 2 m, a flat gain of around 16 dB is achieved by the proposed double-pass amplifier with gain variation of approximately 2.5 dB throughout the wavelength range from 1530 to 1590 nm. However, the noise figure of the double-pass amplifier is slightly higher than that of the single-pass due to inefficient population inversion at the input part of the amplifier.  相似文献   

10.
We present a high-power ytterbium fiber amplifier based on active tapered double-clad fiber (T-DCF) and capable of high single-pass gain. The T-DCF power amplifier seeded with a 320 mW narrow-band signal generates up to 110 W of average output power corresponding to more than 25 dB gain. The amplifier exhibits near-diffraction-limited beam quality (M 2 = 1.06) at the highest output power, which was limited by the available pump power. With a broadband seed source, the amplifier produced a gain of nearly 40 dB obtained for low-signal limit of the seed. The high output power combined with high gain is achieved owing to amplified spontaneous emission (ASE) filtering and increased stimulated Brillouin scattering (SBS) threshold inherent to the axially non-uniform geometry. The amplifier operates efficiently with a wide range of input seed powers thus providing the basis for one-stage tapered amplifier which combines the functions of preamplifier and power amplifier and can be a competitive alternative to multi-stage design.  相似文献   

11.
Y. Liu  L. L. Lan  S. F. Ren  S. G. Zeng  J. Li 《Laser Physics》2012,22(10):1618-1621
In this paper, the gain characteristics of injection-seeded ytterbium-doped fiber laser were demonstrated. Comparing with the conventional single-pass and double-pass fiber amplifier, the injection-seeded ytterbium-doped fiber laser has many advantages: such as high gain or output power, simple structure. The amplified spontaneous emission (ASE) of this fiber laser also was discussed in detail.  相似文献   

12.
This paper aims to evaluate a comprehensive numerical model based on solving rate equations of a thulium-doped silica-based fiber amplifier. The pump power and thulium-doped fiber (TDF) length for single-pass thulium-doped fiber amplifiers (TDFA) are theoretically optimized to achieve the optimum gain and noise figure (NF) at the center of S-band region. The 1064 nm pump is used to provide both ground-state and excited state absorptions for amplification in the S-band region. The theoretical result is in agreement with the published experimental result.  相似文献   

13.
The output of Nd∶YAG single-pass laser amplifiers is studied analytically and experimentally. Methods of analysis for single-pass Nd∶YAG laser amplifier are presented. A flashlamp-pumped Q-switched Nd∶YAG oscillator/amplifier laser system has been developed with the average output power of 121.5 W.  相似文献   

14.
The output of Nd∶YAG single-pass laser amplifiers is studied analytically and experimentally. Methods of analysis for single-pass Nd∶YAG laser amplifier are presented. A flashlamp-pumped Q-switched Nd∶YAG oscillator/amplifier laser system has been developed with the average output power of 121.5 W.  相似文献   

15.
Foroni M  Poli F  Cucinotta A  Selleri S 《Optics letters》2006,31(22):3228-3230
A new S-band erbium-doped fiber amplifier module with a double-pass configuration based on two circulators has been designed and constructed. The bending losses of a depressed-cladding doped fiber have been exploited to suppress the amplified spontaneous emission in the C band. The experimental characterization of the double-pass amplifier has shown that significant advantages can be obtained with respect to the single-pass configuration.  相似文献   

16.
We have proposed and demonstrated a double-pass ytterbium-doped fiber amplifier using an optical circulator and a fiber Bragg grating as reflector. When the signal has passed through the ytterbium-doped fiber once, it reflects off a 0.2-nm passive fiber Bragg grating filter. This reduces amplified spontaneous emission (ASE) noise from the first pass. The input signal light is amplified both forward and backward through ytterbium-doped fiber. With this double-pass configuration, 1053.15-nm unsaturated signal gain of 28 dB, gain coefficient of 1.1 dB/mW, and noise figure of less than 4 dB are achieved at 977-nm pump power of 68 mW. It is also found that this double-pass configure provides enhancing gain coefficient and improving noise figure by comparison with single-pass configuration.  相似文献   

17.
A gain and gain-flatness improved L-band dual-pass Raman fiber amplifier (RFA) utilizing a photonic crystal fiber (PCF) as gain medium is demonstrated. By introducing complementary gain spectra of typical forward and backward pumping single-pass RFA using the same PCF, we finally achieve average net gain level of 22.5 dB with a ±0.8 dB flattening gain in 20-nm bandwidth from 1595 nm to 1615 nm, which is rare in RFAs with only one single pump and no flattening filter. Compared with the single-pass pump configurations, gain level, flatness and bandwidth are greatly improved by using the dual-pass amplification configuration. The limitation of this configuration caused by multi-path interference (MPI) noise and stimulated Brillouin scattering (SBS) is also discussed.  相似文献   

18.
A burst of six pulses with an average power of 38.7 W are obtained for a pulse-burst picosecond 1064 nm laser system at 1 k Hz. The six pulses have equal amplitudes and pulse spacings of 800 ps, the beam quality of the M2 factor is less than 2, and the pulse width is 67 ps. Seed pulses are broadened from 22 to 136 ps by single-pass volume Bragg gratings. A laser-diode end-pump Nd:YVO_4 beam-splitting amplifier is used to divide and amplify a single pulse into six pulses. An Nd:YAG regenerative amplifier and a single-pass high-gain amplifier are applied.  相似文献   

19.
We report an all-fiber high power,single frequency large-mode area (LMA) linearly polarized ytterbiumdoped fiber amplifiers (YDFA) module,which is based on the master oscillator multi-stage power amplifiers (MOPA).The maximum output power is 43.8 W at a wavelength of 1064 nm when 60-W launched pump light is coupled,with high slope efficiency of 88%,polarization extinction rate (PER) >17.2 dB and nearly diffraction-limited beam quality (M 2 <1.1).  相似文献   

20.
A pulsed master oscillator power amplifier system is constructed using a double-cladding polarized Ybdoped fiber and an all-fiber Q-switched narrow-linewidth pulsed laser used as seed laser.This system has a high repetition rate and provides a nanosecond pulsed laser with a narrow linewidth and linear polarization.Moreover,it generates amplified radiation with up to 14 W of average power,narrow linewidth(full-width at half-maximum is smaller than 0.12 nm),linear polarization at 1 080-nm wavelength,repetition rate of 51 kHz,and pulse duration of approximately 50 ns.Based on this pulsed amplified radiation,3.5 W of green laser,with an optical-to-optical efficiency of 27.3%,is obtained via single-pass frequency doubling using a noncritical phase matching KTP crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号