首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanotechnology patent applications published during 1991–2008 have been examined using the “title–abstract” keyword search on esp@cenet “worldwide” database. The longitudinal evolution of the number of patent applications, their topics, and their respective patent families have been evaluated for 15 national patent offices covering 98% of the total global activity. The patent offices of the United States (USA), People’s Republic of China (PRC), Japan, and South Korea have published the largest number of nanotechnology patent applications, and experienced significant but different growth rates after 2000. In most repositories, the largest numbers of nanotechnology patent applications originated from their own countries/regions, indicating a significant “home advantage.” The top applicant institutions are from different sectors in different countries (e.g., from industry in the US and Canada patent offices, and from academe or government agencies at the PRC office). As compared to 2000, the year before the establishment of the US National Nanotechnology Initiative (NNI), numerous new invention topics appeared in 2008, in all 15 patent repositories. This is more pronounced in the USA and PRC. Patent families have increased among the 15 patent offices, particularly after 2005. Overlapping patent applications increased from none in 1991 to about 4% in 2000 and to about 27% in 2008. The largest share of equivalent nanotechnology patent applications (1,258) between two repositories was identified between the US and Japan patent offices.  相似文献   

2.
To assess worldwide development of nanotechnology, this paper compares the numbers and contents of nanotechnology patents in the United States Patent and Trademark Office (USPTO), European Patent Office (EPO), and Japan Patent Office (JPO). It uses the patent databases as indicators of nanotechnology trends via bibliographic analysis, content map analysis, and citation network analysis on nanotechnology patents per country, institution, and technology field. The numbers of nanotechnology patents published in USPTO and EPO have continued to increase quasi-exponentially since 1980, while those published in JPO stabilized after 1993. Institutions and individuals located in the same region as a repository’s patent office have a higher contribution to the nanotechnology patent publication in that repository (“home advantage” effect). The USPTO and EPO databases had similar high-productivity contributing countries and technology fields with large number of patents, but quite different high-impact countries and technology fields after the average number of received cites. Bibliographic analysis on USPTO and EPO patents shows that researchers in the United States and Japan published larger numbers of patents than other countries, and that their patents were more frequently cited by other patents. Nanotechnology patents covered physics research topics in all three repositories. In addition, USPTO showed the broadest representation in coverage in biomedical and electronics areas. The analysis of citations by technology field indicates that USPTO had a clear pattern of knowledge diffusion from highly cited fields to less cited fields, while EPO showed knowledge exchange mainly occurred among highly cited fields.  相似文献   

3.
Nanotechnology, as with many technologies before it, places a strain on existing legislation and poses a challenge to all administrative agencies tasked with regulating technology-based products. It is easy to see how statutory schemes become outdated, as our ability to understand and affect the world progresses. In this article, we address the regulatory problems that nanotechnology posses for the Food and Drug Administration’s (FDA) classification structure for “drugs” and “devices.” The last major modification to these terms was in 1976, with the enactment of the Medical Device Amendments. There are serious practical differences for a classification as a drug or device in terms of time to market and research. Drugs are classified, primarily, as acting by “chemical action.” We lay out some legal, philosophic, and scientific tools that serve to provide a useful, as well as legally and scientifically faithful, distinction between drugs and devices for the purpose of regulatory classification. These issues we raise are worth the consideration of anyone who is interested in the regulation of nano-products or other novel technologies.  相似文献   

4.
In the 2nd Science and Technology Basic Plan (2001–2005), the area of nanotechnology and materials is designated one of the four prioritized areas in funding. Following this plan, Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Ministry of Economy, Trade and Industries (METI), the main funding ministries, and their organizations, Japan Society for the Promotion of Science (JSPS), Japan Science and Technology Agency (JST), National Institute for Materials Science (NIMS), RIKEN, New Energy and Industrial Technology Organization (NEDO), and National Institute of Advanced Industrial Science and Technology (AIST) promotes their research programs. Besides, in order to promote interdisciplinary, interorganizational, and international collaboration of researchers, Nanotechnology Support Project (NSP) was started by MEXT in 2002. The project has two missions: informational support and common use facility support. Nanotechnology Researchers Network Center of Japan is responsible for informational support, and 14 universities and national research institutes are responsible for common use facility support.  相似文献   

5.
Past experience has shown that the successful introduction of a new technology requires careful attention to the interactions between the technology and society. These interactions are bi-directional: on the one hand, technology changes and challenges social patterns and, on the other hand, the governance structures and values of the society affect progress in developing the technology. Nanotechnology is likely to be particularly affected by these kinds of interactions because of its great promise and the unusually early public attention it has received. Moreover, it represents a new kind of experiment in packaging a rather wide range of fundamental research activities under a single “mission-like” umbrella. Although this gives it more impetus as a field, it sets a higher bar for showing successful applications early on and because it links disparate fields, regulatory regimes reasonable for one kind of nanotechnology development may be inappropriately extended to others. There are a number of lessons to be gleaned from experience with the introduction of other technologies, which offer guidance with respect to what pitfalls to avoid and what issues to be sensitive to as we move forward with the development of nanotechnology applications. The problems encountered by nuclear power point out the dangers of over-promising and the role the need for the technology plays in ameliorating fears of risk. The public reaction to biomedical engineering and biotechnology highlights, in addition, the cultural factors that come into play when technologies raise questions about what is “natural” and what is “foreign” and what conceptions are involved in defining “personhood”. In all cases, it has been clear that a main task for those introducing new technology is building public trust–in the safety of the technologies and the integrity of those introducing it. The advocates of nanotechnology have already shown that they are generally aware of the need to consider the public’s reaction, and they have taken the first steps to act on that awareness. We have to build on those beginnings, not limiting our considerations simply to issues of safety. If we do so well, we have the opportunity to develop a new paradigm for technology introduction, which will serve society well in the future.  相似文献   

6.
Trends for nanotechnology development in China, Russia, and India   总被引:1,自引:0,他引:1  
China, Russia, and India are playing an increasingly important role in global nanotechnology research and development (R&D). This paper comparatively inspects the paper and patent publications by these three countries in the Thomson Science Citation Index Expanded (SCI) database and United States Patent and Trademark Office (USPTO) database (1976–2007). Bibliographic, content map, and citation network analyses are used to evaluate country productivity, dominant research topics, and knowledge diffusion patterns. Significant and consistent growth in nanotechnology papers are noted in the three countries. Between 2000 and 2007, the average annual growth rate was 31.43% in China, 11.88% in Russia, and 33.51% in India. During the same time, the growth patterns were less consistent in patent publications: the corresponding average rates are 31.13, 10.41, and 5.96%. The three countries’ paper impact measured by the average number of citations has been lower than the world average. However, from 2000 to 2007, it experienced rapid increases of about 12.8 times in China, 8 times in India, and 1.6 times in Russia. The Chinese Academy of Sciences (CAS), the Russian Academy of Sciences (RAS), and the Indian Institutes of Technology (IIT) were the most productive institutions in paper publication, with 12,334, 6,773, and 1,831 papers, respectively. The three countries emphasized some common research topics such as “Quantum dots,” “Carbon nanotubes,” “Atomic force microscopy,” and “Scanning electron microscopy,” while Russia and India reported more research on nano-devices as compared with China. CAS, RAS, and IIT played key roles in the respective domestic knowledge diffusion.  相似文献   

7.
Korea has become one of the leading countries in nanotechnology along with the U.S., Japan, and Germany. Since 2001, the Korean Government established the ??Nanotechnology Development Plan.?? Since then, the trend in nanotechnology is steadily changing from fundamental research to application-driven technologies. In this paper, we examine the nanotechnology development and policy during the past decade, which includes the investments in R&D, infrastructure, and education. The Third Phase (2011?C2020) on clean nanotechnology convergence and integration in information, energy, and the environmental sector is also given. Furthermore, the program on long-term strategy dealing with sustainability in resolving future societal demand and plans for sustainable energy and environmental activities will be discussed in depth. The outcomes and national evaluations of research and education are also given.  相似文献   

8.
Nanotechnology research has experienced rapid growth in recent years. Advances in information technology enable efficient investigation of publications, their contents, and relationships for large sets of nanotechnology-related documents in order to assess the status of the field. This paper presents the development of a new knowledge mapping system, called Nano Mapper (), which integrates the analysis of nanotechnology patents and research grants into a Web-based platform. The Nano Mapper system currently contains nanotechnology-related patents for 1976–2006 from the United States Patent and Trademark Office (USPTO), European Patent Office (EPO), and Japan Patent Office (JPO), as well as grant documents from the U.S. National Science Foundation (NSF) for the same time period. The system provides complex search functionalities, and makes available a set of analysis and visualization tools (statistics, trend graphs, citation networks, and content maps) that can be applied to different levels of analytical units (countries, institutions, technical fields) and for different time intervals. The paper shows important nanotechnology patenting activities at USPTO for 2005–2006 identified through the Nano Mapper system.  相似文献   

9.
A global scientific and societal endeavor was set in motion by the nanotechnology vision formulated in 1999 that inspired the National Nanotechnology Initiative (NNI) and other national and international R&D programs. Establishing foundational knowledge at the nanoscale has been the main focus of the nanotechnology research community in the first decade. As of 2009, this new knowledge underpinned about a quarter of a trillion dollars worldwide market, of which about $91 billion was in US products that incorporate nanoscale components. Nanotechnology is already evolving toward becoming a general-purpose technology by 2020, encompassing four generations of products with increasing structural and dynamic complexity: (1) passive nanostructures, (2) active nanostructures, (3) nanosystems, and (4) molecular nanosystems. By 2020, the increasing integration of nanoscale science and engineering knowledge and of nanosystems promises mass applications of nanotechnology in industry, medicine, and computing, and in better comprehension and conservation of nature. Nanotechnology’s rapid development worldwide is a testimony to the transformative power of identifying a concept or trend and laying out a vision at the synergistic confluence of diverse scientific research areas. This chapter provides a brief perspective on the development of the NNI since 2000 in the international context, the main outcomes of the R&D programs after 10 years, the governance aspects specific to this emerging field, lessons learned, and most importantly, how the nanotechnology community should prepare for the future.  相似文献   

10.
It is urgent to use a “warm liquid” TMS in large massive calorimeters (with a volume of several hundred liters). This direction in modern nuclear physics is referred to as “non-accelerator” experiments with low-background detectors. Such experiments are associated with the solution of most important problems to understand the Universe structure and search for new particles. These are the well-known problems for searching “dark matter” in the form of new weakly interacting particles, i.e., wimps, observations of coherent scattering of reactor neutrinos. Using this experiment, the standard model of electroweak interactions can be tested. The fully developed fabrication technology of large amounts of “warm liquid” ТМS (in collaboration with the State Research Institute of Chemistry and Technology of Organoelement Compounds) makes it possible to perform such experiments.  相似文献   

11.
Two basic “geometric” effects manifest themselves as slow variations in the properties of the microwave radiation of the active region passing through the solar disk, namely 1) sign inversions of the circular polarization and 2) characteristic peaks of the brightness temperature at certain longitudes on both sides of the central solar meridian and depression near it. These effects are related to the magnetic directivity of the cyclotron radiation governing in the centimeter wavelength range above large spots. The concept of “normal” passage of the active region through the solar disk is introduced in this paper on the basis of studying the mentioned effects observed at two wavelengths, 5.2 cm (Siberian Solar Radiotelescope, Buryatiya) and 1.76 cm (Radioheliograph in Nobeyama, Japan), to separate the “normal,” or “geometric” effects, in the behavior of the microwave radiation from the evolutional effects that may cause high-power solar flares. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 51, No. 8, pp. 641–659, August 2008.  相似文献   

12.
Self-organized block copolymer structures derived from dewetting of thin films are becoming important in nanotechnology because of the various spontaneous and regular sub-micrometric surface patterns that may be obtained. Here, we report on the self-organization of a poly(styrene)-b-poly(ethene-co-butene-1)-b-poly(styrene) triblock copolymer during drying of its solution over a mica substrate. Regular submicrometric arrangements with long-range order were formed at critical polymer concentrations, consisting of parallel ribbons and hexagonal arrays of dots (droplets). This variety of highly ordered structures is explained by the interplay between forming mechanisms, mainly due to “fingering instabilities” at the three-phase line of the copolymer solution during drying. The thickness of the structures was “quantized” due to the microphase separation of the block copolymer. The formation of hexagonal patterns may be attributed to Marangoni instability at the liquid film surface prior to dewetting.  相似文献   

13.
14.
Over the last decade social scientific researchers have examined how the public perceives risks associated with nanotechnology. The body of literature that has emerged has been methodologically diverse. The findings have confirmed that some publics perceive nanotechnology as riskier than others, experts feel nanotechnology is less risky than the public does, and despite risks the public is optimistic about nanotechnology development. However, the extant literature on nanotechnology and risk suffers from sometimes widely divergent findings and has failed to provide a detailed picture of how the public actually feels about nanotechnology risks when compared to other risks. This study addresses the deficiencies in the literature by providing a comparative approach to gauging nanotechnology risks. The findings show that the public does not fear nanotechnology compared to other risks. Out of 24 risks presented to the participants, nanotechnology ranked 19th in terms of overall risk and 20th in terms of “high risk.”  相似文献   

15.
We study phase transitions of a system of particles on the one-dimensional integer lattice moving with constant acceleration, with a collision law respecting slower particles. This simple deterministic “particle-hopping” traffic flow model being a straightforward generalization to the well known Nagel–Schreckenberg model covers also a more recent slow-to-start model as a special case. The model has two distinct ergodic (unmixed) phases with two critical values. When traffic density is below the lowest critical value, the steady state of the model corresponds to the “free-flowing” (or “gaseous”) phase. When the density exceeds the second critical value the model produces large, persistent, well-defined traffic jams, which correspond to the “jammed” (or “liquid”) phase. Between the two critical values each of these phases may take place, which can be interpreted as an “overcooled gas” phase when a small perturbation can change drastically gas into liquid. Mathematical analysis is accomplished in part by the exact derivation of the life-time of individual traffic jams for a given configuration of particles. This research has been partially supported by Russian Foundation for Fundamental Research and French Ministry of Education grants.  相似文献   

16.
Nanotechnology can be described as an emerging technology and, as has been the case with other emerging technologies such as genetic modification, different socio-psychological factors will potentially influence societal responses to its development and application. These factors will play an important role in how nanotechnology is developed and commercialised. This article aims to identify expert opinion on factors influencing societal response to applications of nanotechnology. Structured interviews with experts on nanotechnology from North West Europe were conducted using repertory grid methodology in conjunction with generalized Procrustes analysis to examine the psychological constructs underlying societal uptake of 15 key applications of nanotechnology drawn from different areas (e.g. medicine, agriculture and environment, chemical, food, military, sports, and cosmetics). Based on expert judgement, the main factors influencing societal response to different applications of nanotechnology will be the extent to which applications are perceived to be beneficial, useful, and necessary, and how 'real' and physically close to the end-user these applications are perceived to be by the public.  相似文献   

17.
Nanotechnology is touted as a transformative technology in that it is predicted to improve many aspects of human life. There are hundreds of products in the market that utilize nanostructures in their design, such as composite materials made out of carbon or metal oxides. Potential risks to consumers, to the environment, and to workers from the most common passive nanomaterial—carbon nanotubes—are emerging through scientific research. Newer more active nanostructures—such as cancer therapies and targeted drug systems—are also increasing in use and are raising similar risk concerns. Governing the risks to workers is the subject of this commentary. The Occupational Safety and Health Act of 1970 grants the Occupational Safety and Health Administration the legal authority to set occupational health standards to insure that no worker suffers material impairment of health from work. However, setting a standard to protect workers from nanotechnology risks may occur some time in the future because the risks to workers have not been well characterized scientifically. Alternative risk governances—such as dynamic oversight through stakeholder partnerships, “soft law” approaches, and national adoption of international consensus standards—are evaluated in this article.  相似文献   

18.
The article discusses, in the context of nanotechnology, whether current concepts of chemical risk assessment can be used to assess nanorisk. Nanorisk can be defined from the narrow (eco)toxicological perspective to the broader sense to include societal/cultural impacts or even to the fundamental philosophical level, i.e. questioning societies need for the technology. We outline here the limitations of chemical risk assessment and other recent proposed risk governance paradigms in relation to nanotechnology and nanomaterials, including its inability to include societal risks (ownership, privacy, security, nanodivide,1 convergence of nano-, bio-, etc.) and metaphysical risk (including the lay persons perspective on the risks of nanotechnology). Finally, we outline the fundamental principles and criteria that an alternative comprehensive framework should be based on.  相似文献   

19.
20.
This article presents early results from an opinion formation study based on a 76-member panel of U.S. citizens, with comparison data from a group of 177 nanotechnology experts. While initially similar to the expert group in terms of their perceptions of the risks, benefits, and need for regulation characterizing several forms of nanotechnology, the first follow-up survey indicates that the panel is beginning to diverge from the experts, particularly with respect to perceptions of the levels of various “societal” risks that nanotechnology might present. The data suggest that responding to public concerns may involve more than attention to physical risks in areas such as health and environment; concerns about other forms of risk actually appear more salient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号