首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 787 毫秒
1.
平板大攻角绕流升力和阻力系数的计算   总被引:1,自引:0,他引:1  
二维平板或二维对称薄翼型大攻角绕流升力和阻力系数与攻角之间存在的函数关系一般用数据表格的形式给出。本文根据垂直平板绕流阻力实验数据和对称薄翼型全攻角绕流实验数据,分析得到了平板大攻角绕流总压力及其升力分量和阻力分量系数的近似计算公式。结果表明:平板总压力系数约等于攻角正弦值的2倍;总压力的阻力分量系数约等于攻角正弦值平方的2倍;升力分量系数约为攻角2倍的正弦值。计算结果与两组试验数据具有较好的一致性。  相似文献   

2.
Effects of Gurney Flaps on a NACA0012 Airfoil   总被引:4,自引:0,他引:4  
Experimental measurements of surface pressure distributions and wake profiles were obtained for a NACA0012 airfoil to determine the lift, drag, and pitching-moment coefficients for various configurations. The addition of a Gurney flap increased the maximum lift coefficient from 1.37 to 1.74, however there was a drag increment at low-to-moderate lift coefficient. In addition, the boundary layer profile measurements were taken using a rake of total pressure probes at the 90% chord location on the suction side. The effective Gurney flap height is about 2% of chord length, which provides the highest lift-to-drag ratio among the investigated configurations when compared with the clean NACA0012 airfoil. In this case, the device remains within the boundary layer. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Experimental study was conducted for boundarylayers on a sharp 5° half-angle cone of 400mm length at angles of attack. The model was tested in the T-326 hypersonic wind tunnel (ITAM) at freestream Mach number M = 5.95. Mean and fluctuation wall characteristics of the boundary layer are measured at 0°, 2°, 3° and 4° angles of attack for different stagnation pressures. Pulsation measurements are carried out by means of ALTP sensor. Pressure and temperature distributions along the model are obtained, and transition beginning and end locations have been found. Boundary layer stabilization with the increase of angle of attack and the decrease of stagnation pressure is observed. High frequency pulsations inherent to hypersonic boundary layer (second mode) have been detected.  相似文献   

4.
The flow characteristics around an inclined elliptic cylinder located near a flat plate were investigated experimentally. The axis ratio of the elliptic cylinder was AR=2. The pressure distributions along the surface of the cylinder and the flat plate were measured by varying the angle of attack of the elliptic cylinder. The velocity profiles behind the cylinder were measured using hot-wire anemometry. When the angle of attack varies, the peak pressure location on the windward cylinder surface moves towards the rear edge of the cylinder, while that on the leeward surface moves towards the front edge of the cylinder. The vortex-shedding frequency also gradually decreases, defining a critical angle of attack for each gap ratio. The location of the minimum pressure on the flat plate surface moves downstream for positive angles of attack, while it moves upstream for negative angles of attack. Negative angles of attack cause a greater disturbance in the boundary layer near the wall compared to positive angles of attack. This shows that the separated wall shear layer from the boundary layer and the lower shear layer of the cylinder wake are strongly merged compared to other cases.  相似文献   

5.
The ability of outer-layer devices to reduce wall shear stress over a substantial streamwise distance in rough-wall turbulent boundary layers has been studied experimentally. The devices examined are a pair of thin flat ribbons placed in tandem as well as those having symmetric airfoil sections. The wall conditions examined are smooth, d- and k-type transverse-groove and sandgrain roughnesses. The wall drag is found to be reduced from the respective normal levels in all rough walls. All k-type rough walls exhibit a similar level of relative wall drag reduction which is also smaller than that in a smooth-wall. The d-type rough walls exhibit a transitional behaviour — the relative wall drag reduction drops from the smooth wall level to that of the k-type roughness with increasing roughness Reynolds number. However, the absolute reductions in the local wall shear stress are similar in both the rough and smooth walls. On the other hand, the relative reductions are lower in the rough walls because of a higher reference drag which is caused by the unique presence of a pressure component on which the devices are not as effective.  相似文献   

6.
Micro Air Vehicles (MAVs) can be difficult to control in the outdoor environment as they fly at relatively low speeds and are of low mass, yet exposed to high levels of freestream turbulence present within the Atmospheric Boundary Layer. In order to examine transient flow phenomena, two turbulence conditions of nominally the same longitudinal integral length scale (Lxx/c?=?1) but with significantly different intensities (Ti?=?7.2?% and 12.3?%) were generated within a wind tunnel; time-varying surface pressure measurements, smoke flow visualization, and wake velocity measurements were made on a thin flat plate airfoil. Rapid changes in oncoming flow pitch angle resulted in the shear layer to separate from the leading edge of the airfoil even at lower geometric angles of attack. At higher geometric angles of attack, massive flow separation occurred at the leading edge followed by enhanced roll up of the shear layer. This lead to the formation of large Leading Edge Vortices (LEVs) that advected at a rate much lower than the mean flow speed while imparting high pressure fluctuations over the airfoil. The rate of LEV formation was dependent on the angle of attack until 10° and it was independent of the turbulence properties tested. The fluctuations in surface pressures and consequently aerodynamic loads were considerably limited on the airfoil bottom surface due to the favorable pressure gradient.  相似文献   

7.
A three-component accelerometer balance system is used to study the drag reduction effect of an aerodisc on large angle blunt cones flying at hypersonic Mach numbers. Measurements in a hypersonic shock tunnel at a freestream Mach number of 5.75 indicate more than 50% reduction in the drag coefficient for a 120° apex angle blunt cone with a forward facing aerospike having a flat faced aerodisc at moderate angles of attack. Enhancement of drag has been observed for higher angles of attack due to the impingement of the flow separation shock on the windward side of the cone. The flowfields around the large angle blunt cone with aerospike assembly flying at hypersonic Mach numbers are also simulated numerically using a commercial CFD code. The pressure and density levels on the model surface, which is under the aerodynamic shadow of the flat disc tipped spike, are found very low and a drag reduction of 64.34% has been deduced numerically.  相似文献   

8.
The effects of an accelerating freestream from a nonzero velocity on the transitional separation bubble characteristics were investigated quantitatively. Hot wire anemometry was used to determine the boundary layer velocity profile repsonse to the acceleration at selected chordwise locations on a Wortmann FX 63-137 airfoil at 7 ° angle of attack. Both positive and negative accelerations were studied from base chord Reynolds number of 100,000 and 150,000, respectively. The purpose of this experiment was to verify the trends witnessed in previous research concerning a sinusoidally oscillating freestream velocity by uncoupling the accelerating and decelerating boundary layer effects. The experimental results indicate that as a result of a freestream acceleration, the separation bubble position shifts in the direction opposite to the chordwise direction it would move for a quasi-steady velocity change. The transition location was more responsive to the acceleration than was the separation position. This supports the oscillating freestream experiment conclusions.This research was supported by the U.S. Navy Office of Naval Research under contract N00014-83-K-0239  相似文献   

9.
Flow characteristics in the vicinity of the flap of a single-slotted airfoil are presented and analysed. The flow remained attached over the model surfaces except in the vicinity of the flap trailing edge where a small region of boundary-layer separation extended over the aft 7% of flap chord. The airfoil configuration was tested at a Mach number of 0.09 and a chord Reynolds number of 1.8 × 106 in the NASA Ames Research Center 7- by 10-Foot Wind Tunnel. The flow was complicated by the presence of a strong, initially inviscid, jet, emanating from the slot between airfoil and flap, and a gradual merging of the main airfoil wake and flap suction-side boundary layer.Research Engineer, NRC Research AssociateAerospace Engineer  相似文献   

10.
Time-resolved surface pressure measurements are used to experimentally investigate characteristics of separation and transition over a NACA 0018 airfoil for the relatively wide range of chord Reynolds numbers from 50,000 to 250,000 and angles of attack from 0° to 21°. The results provide a comprehensive data set of characteristic parameters for separated shear layer development and reveal important dependencies of these quantities on flow conditions. Mean surface pressure measurements are used to explore the variation in separation bubble position, edge velocity in the separated shear layer, and lift coefficients with angle of attack and Reynolds number. Consistent with previous studies, the separation bubble is found to move upstream and decrease in length as the Reynolds number and angle of attack increase. Above a certain angle of attack, the proximity of the separation bubble to the location of the suction peak results in a reduced lift slope compared to that observed at lower angles. Simultaneous measurements of the time-varying component of surface pressure at various spatial locations on the model are used to estimate the frequency of shear layer instability, maximum root-mean-square (RMS) surface pressure, spatial amplification rates of RMS surface pressure, and convection speeds of the pressure fluctuations in the separation bubble. A power-law correlation between the shear layer instability frequency and Reynolds number is shown to provide an order of magnitude estimate of the central frequency of disturbance amplification for various airfoil geometries at low Reynolds numbers. Maximum RMS surface pressures are found to agree with values measured in separation bubbles over geometries other than airfoils, when normalized by the dynamic pressure based on edge velocity. Spatial amplification rates in the separation bubble increase with both Reynolds number and angle of attack, causing the accompanying decrease in separation bubble length. Values of the convection speed of pressure fluctuations in the separated shear layer are measured to be between 35 and 50% of the edge velocity, consistent with predictions of linear stability theory for separated shear layers.  相似文献   

11.
The effects of a trapped vortex cell (TVC) on the aerodynamic performance of a NACA0024 wing model were investigated experimentally at Re = 106 and 6.67×1056.67\times 10^{5}. The static pressure distributions around the model and the wake velocity profiles were measured to obtain lift and drag coefficients, for both the clean airfoil and the controlled configurations. Suction was applied in the cavity region to stabilize the trapped vortex. For comparison, a classical boundary layer suction configuration was also tested. The drag coefficient curve of the TVC-controlled airfoil showed sharp discontinuities and bifurcative behavior, generating two drag modes. A strong influence of the angle of attack, the suction rate and the Reynolds number on the drag coefficient was observed. With respect to the clean airfoil, the control led to a drag reduction only if the suction was high enough. Compared to the classical boundary layer suction configuration, the drag reduction was higher for the same amount of suction only in a specific range of incidence, i.e., α = −2° to α = 6° and only for the higher Reynolds number. For all the other conditions, the classical boundary layer suction configuration gave better drag performances. Moderate increments of lift were observed for the TVC-controlled airfoil at low incidence, while a 20% lift enhancement was observed in the stall region with respect to the baseline. However, the same lift increments were also observed for the classical boundary layer suction configuration. Pressure fluctuation measurements in the cavity region suggested a very complex interaction of several flow features. The two drag modes were characterized by typical unsteady phenomena observed in rectangular cavity flows, namely the shear layer mode and the wake mode.  相似文献   

12.
The two-dimensional flow of a viscous incompressible fluid near the leading edge of a slender airfoil is considered. An asymptotic theory of this flow is constructed on the basis of an analysis of the Navier—Stokes equations at large Reynolds numbers by means of matched asymptotic expansions. A central feature of the theory is the region of interaction of the boundary layer and the exterior inviscid flow; such a region appears on the surface of the airfoil in a definite range of angles of attack. The boundary-value problem for this region is reduced to an integrodifferential equation for the distribution of the friction. This equation has been solved numerically. As a result, closed separation regions are constructed, and the angle of attack at which separation occurs is found.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 42–51, January–February, 1981.I thank V. V. Sychev and Vik. V, Sychev for assistance.  相似文献   

13.
This study explores the fluid mechanics and force generation capabilities of an inverted heaving airfoil placed close to a moving ground using a URANS solver with the Spalart-Allmaras turbulence model. By varying the mean ground clearance and motion frequency of the airfoil, it was possible to construct a frequency-height diagram of the various forces acting on the airfoil. The ground was found to enhance the downforce and reduce the drag with respect to freestream. The unsteady motion induces hysteresis in the forces’ behaviour. At moderate ground clearance, the hysteresis increases with frequency and the airfoil loses energy to the flow, resulting in a stabilizing motion. By analogy with a pitching motion, the airfoil stalls in close proximity to the ground. At low frequencies, the motion is unstable and could lead to stall flutter. A stall flutter analysis was undertaken. At higher frequencies, inviscid effects overcome the large separation and the motion becomes stable. Forced trailing edge vortex shedding appears at high frequencies. The shedding mechanism seems to be independent of ground proximity. However, the wake is altered at low heights as a result of an interaction between the vortices and the ground.  相似文献   

14.
多喷口高效能厚翼的研究   总被引:1,自引:0,他引:1  
王春雨  孙茂 《力学学报》1999,31(5):611-617
提出了以下高效能翼型的思想:用多喷口小速度切向吹气控制厚翼上的流动分离,使流动接近于理想流状况,以产生大升力,小阻力;因多喷口小速度吹气耗能小,故翼型的有效升阻比可以很大.基于雷诺平均N-S方程进行了数值模拟实验.主要结果表明:对于厚度为0.4的儒氏翼型,在升力系数高达3.5时,有效升阻比可达约50(单喷口吹气约为23);对于厚度为0.4的"升力体"翼型,在升力系数达2.2时,有效升阻比可达40(喷口吹气约为10).  相似文献   

15.
Experiments are carried out to study flow and heat transfer characteristics over NACA0018 aerofoil when the body approaches the wall of a wind tunnel. Investigations have been done to study the effect of wall proximity due to flow separation around the body at Reynolds number 2.5 × 105, different height ratios and various angles of attack. The static pressure distribution has been measured on upper and lower surfaces of the aerofoil. The results have been presented in the form of pressure coefficient, drag coefficient for different height ratios. Pressure coefficient values are decreased and then increased on the lower surface of the aerofoil and decreased on the upper surface of the aerofoil at all angles of attack. The negative pressure coefficient and drag coefficient decreases as the body approaches the upper wall of wind tunnel. The maximum value of drag coefficient has been observed at an angle of attack 30° for the aerofoil at all height ratios. The Heat transfer experiments have been carried out under constant heat flux condition. Heat transfer coefficients are determined from the measured wall temperature and ambient temperature and presented in the form of Nusselt number. The variation of local as well as average Nusselt number has been shown with non dimensional distance for different angles of attack and for various height ratios. The local as well as average Nusselt number decreases as the height ratio decreases for all non-dimensional distance and angles of attack respectively. Maximum value of average Nusselt number has been observed at an angle of attack 40°.  相似文献   

16.
不可压缩机翼绕流的有限谱法计算   总被引:2,自引:0,他引:2  
结合有限谱QUICK格式求解不可压缩粘性流问题。这一格式用于模拟不同攻角下的NACA1200机翼绕流问题。利用体积力,提出了将流场速度从0加速到来流速度的方法。区别于传统的压力梯度为零的边界条件,推导出一个更精确的压力边界条件。为使速度散度保持为零,在泊松方程中给速度散度一个特殊的处理。这一成果说明了有限谱法不但具有很高的精度,而且能灵活地和其他格式一起构造出新的格式,从而成功地应用到复杂流场不可压缩流动的数值计算中。  相似文献   

17.
The generation of control moments without moving control surfaces is of great practical importance. Following a successful flight demonstration of creating roll motion without ailerons using differential, lift oriented, flow control the current study is a first step towards generating yawing motion via differential flow controlled drag.A wind tunnel study was conducted on a 21% thick Glauert type airfoil. The upper surface flow is partially separated from the two-thirds chord location and downstream on this airfoil at all incidence angles. An array of mass-less Piezo-fluidic actuators, located at x/c = 0.65, are capable of fully reattaching the flow in a gradual, controlled manner. The actuators are individually operated such that the boundary layer could be controlled in a 3D fashion.Several concepts for creating yaw motion without moving control surface are examined. The ultimate goal is to generate the same lift on both wings, while decreasing the drag on one wing and increasing the drag on the other, therefore creating a yawing moment. Decreased drag is created by effective part-span separation delay while increased drag can be created by enhanced generation of vortex shedding or by highly localized 3D actuation.Detailed measurements of 3D surface pressure distributions and wake data with three velocity and streamwise vorticity components are presented and discussed along with surface flow visualization images. The data provide evidence that yawing moments can be generated with AFC.  相似文献   

18.
利用有限体积法实现了基于非正交同位网格的SIMPLE算法。基于熵分析方法,采用涡粘性模型求解湍流熵产方程,系统研究了湍流模型对二维翼型绕流流场熵产率的影响。通过计算NACA0012翼型在来流雷诺数为2.88×106时,0°攻角~16.5°攻角范围内的翼型表面压力系数分布和升阻力特性,验证了算法及程序的正确性。结果表明,选择不同湍流模型时,翼型流场熵产的计算结果存在差异,湍流耗散是引起流场熵产的主要原因;翼型流场的熵产主要发生在翼型前缘区、壁面边界层和翼型尾流区域,流场熵产率与翼型阻力系数线性相关;当产生分离涡时,粘性耗散引起的熵产下降。  相似文献   

19.
Experimental investigations in fluid flow and heat transfer have been carried out to study the effect of wall proximity due to flow separation around a square prism at Reynolds number 2.6 × 104, blockage ratio 0.1, different height-ratios and various angles of attack. The static pressure distribution has been measured on all faces of the square prism. The results have been presented in the form of pressure coefficient, drag coefficient for various height-ratios. The pressure distribution shows positive values on the front face whereas on the rear face negative values of the pressure coefficient have been observed. The positive pressure coefficient for different height-ratios does not vary too much but the negative values of pressure coefficient are higher for all points on the surface as the bluff body approaches towards the upper wall of the wind tunnel. The drag coefficient decreases with the increase in angle of attack as the height-ratio decreases. The maximum value of drag coefficient has been observed at an angle of attack nearly 50° for the square prism at all height-ratios. The heat transfer experiments have been carried out under constant heat flux condition. Heat transfer coefficient are determined from the measured wall temperature and ambient temperature and presented in the form of Nusselt number. Both local and average Nusselt numbers have been presented for various height-ratios. The variation of local Nusselt number has been shown with non-dimensional distance for different angles of attack. The variation of average Nusselt number has also been shown with different angles of attack. The local as well as average Nusselt number decreases as the height-ratio decreases for all non-dimensional distance and angle of attack, respectively, for the square prism. The average Nusselt number for the square prism varies with the angle of attack. But there is no definite angle of attack at which the value of average Nusselt number is either maximum or minimum.  相似文献   

20.
Incompressible flow separating from the upper surface of an airfoil at an 18° angle of attack and a Reynolds number of Re = 105, based on the freestream velocity and chord length c, is studied by the means of large-eddy simulation (LES). The numerical method is based on second-order central spatial discretization on a Cartesian grid using an immersed boundary technique. The results are compared with an LES using body-fitted nonorthogonal grids and with experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号