首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a transformation matrix, we reduce a system of differential equations with a small parameter in the coefficients of a part of derivatives and a turning point to an integrable system of equations.  相似文献   

2.
采用等效力系变换矩阵研究了双模量静不定桁架极限载荷问题.首先证明了固体的等效力系变换矩阵与等效位移变换矩阵是互为转置的矩阵,采用等效力系变换矩阵求解双模量静不定桁架结构的内力,然后再利用静力方程确定双模量静不定桁架结构的极限载荷.当力的变换关系可以根据物理条件容易求得,而位移的变换关系不容易找出时,用等效力系变换矩阵求解静不定桁架极限载荷,就更能显示出其计算过程简洁、清晰等优点.用等效力系变换矩阵求解静不定桁架极限载荷不涉及材料的性质,对各向同性材料、双模量材料静不定桁架极限载荷的求解都适用.  相似文献   

3.
This paper presents a matrix formulation for the dynamic analysis of planar mechanisms consisting of interconnected rigid bodies. The formulation initially uses the rectangular Cartesian coordinates of an equivalent constrained system of particles to define the configuration of the mechanical system. This results in a simple and straightforward procedure for generating the equations of motion. The equations of motion are then derived in terms of relative joint coordinates through the use of a velocity transformation matrix. The velocity transformation matrix relates the relative joint velocities to the Cartesian velocities. For the open-loop case, this process automatically eliminates all of the non-working constraint forces and leads to an efficient integration of the equations of motion. For the closed-loop case, suitable joints should be cut and few cut-joints constraint equations should be included for each closed loop. Two examples are used to demonstrate the generality and efficiency of the proposed method.  相似文献   

4.
基于Fourier级数的时变周期系数Riccati微分方程精细积分   总被引:1,自引:1,他引:0  
结合Fourier级数展开方法,本文提出了基于精细积分的时变周期系数Riccati微分方程求解高效算法.首先,利用Fourier级数展开方法将周期系统表示成三角级数形式,在一个积分步内使用精细积分方法得到对应Hamilton系统状态转移矩阵的表达式.然后,通过Riccati变换的方法,得到含有状态转移矩阵的时变周期系数Riccati微分方程解的递推格式.本文方法充分利用了方程本身的周期性特点,文中的数值算例表明算法具有计算效率高、结果可靠等优势.  相似文献   

5.
The machinery of Lie theory (groups and algebras) is applied to the system of equations governing the unsteady flow of a polytropic gas. The action on solutions of transformation groups which leave the equations invariant is considered. Using the invariants of the transformation groups, various symmetry reductions are achieved in both the steady state and the unsteady cases. These reduce the system of partial differential equations to systems of ordinary differential equations for which some closed-form solutions are obtained. It is then illustrated how each solution in the steady case gives rise to time-dependent solutions.  相似文献   

6.
The paper addresses the forced flexural-and-torsional vibrations of a cantilever beam of constant cross section. The relevant boundary-value problem is solved. The system of two partial differential equations of the fourth order that describes these vibrations is analyzed in a vector-function space and is subjected to an equivalent transformation to obtain one vector equation of the fourth order with two matrices as coefficients. One is an idempotent matrix; the other is a diagonal matrix. This makes it much easier to construct a Cauchy vector function as an analytic function of these matrices __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 8, pp. 102–114, August 2007.  相似文献   

7.
Equations of a two-dimensional static problem of anisotropic elasticity are brought to a simple form with the use of orthogonal and affine transformations of coordinates and corresponding transformations of mechanical quantities. It is proved that an arbitrary matrix of elasticity moduli containing six independent components can be always converted by a congruent transformation to a matrix with two independent components, which are called the canonical moduli. Depending on the relations between the canonical moduli, the determinant of the matrix of operators of equations in displacements is presented as a product of various quadratic terms. A general presentation of the solution of equations in displacements in the form of a linear combination of the first derivatives of two quasi-harmonic functions satisfying two independent equations is given. A symmetry operator (i.e., a formula of production of new solutions) is found to correspond to each presentation. In a three-dimensional case, the matrix of elasticity moduli with 21 independent components is congruent to a matrix with 12 independent canonical moduli.  相似文献   

8.
A general weak conservative form of Navier-Stokes equations expressed with respect to non-orthogonal Curvilinear coordinates and with primitive variables was obtained by using tensor analysis technique, where the contravariant and covariant velocity components were employed. Compared with the current coordinate transformation method, the established equations are concise and forthright, and they are more convenient to be used for solving problems in body-fitted curvilinear coordinate system. An implicit factored scheme for solving the equations is presented with detailed discussions in this paper. For n-dimensional flow the algorithm requires n-steps and for each step only a block tridiagonal matrix equation needs to be solved. It avoids inverting the matrix for large systems of equations and enhances the speed of arithmetic. In this study, the Beam- Warming’s implicit factored schceme is extended and developed in non-orthogonal curvilinear coordinate system.  相似文献   

9.
10.
In this paper, recursive equations of motion of spatial linkages are presented. The method uses the concepts of linear and angular momentums to generate the rigid body equations of motion in terms of the Cartesian coordinates of a dynamically equivalent constrained system of particles, without introducing any rotational coordinates and the corresponding rotational transformation matrix. For the open-chain system, the equations of motion are generated recursively along the serial chains. Closed-chain system is transformed to open-chain by cutting suitable kinematic joints and introducing cut–joint constraints. An example is chosen to demonstrate the generality and simplicity of the developed formulation.  相似文献   

11.
Deformable components in multibody systems are subject to kinematic constraints that represent mechanical joints and specified motion trajectories. These constraints can, in general, be described using a set of nonlinear algebraic equations that depend on the system generalized coordinates and time. When the kinematic constraints are augmented to the differential equations of motion of the system, it is desirable to have a formulation that leads to a minimum number of non-zero coefficients for the unknown accelerations and constraint forces in order to be able to exploit efficient sparse matrix algorithms. This paper describes procedures for the computer implementation of the absolute nodal coordinate formulation' for flexible multibody applications. In the absolute nodal coordinate formulation, no infinitesimal or finite rotations are used as nodal coordinates. The configuration of the finite element is defined using global displacement coordinates and slopes. By using this mixed set of coordinates, beam and plate elements can be treated as isoparametric elements. As a consequence, the dynamic formulation of these widely used elements using the absolute nodal coordinate formulation leads to a constant mass matrix. It is the objective of this study to develop computational procedures that exploit this feature. In one of these procedures, an optimum sparse matrix structure is obtained for the deformable bodies using the QR decomposition. Using the fact that the element mass matrix is constant, a QR decomposition of a modified constant connectivity Jacobian matrix is obtained for the deformable body. A constant velocity transformation is used to obtain an identity generalized inertia matrix associated with the second derivatives of the generalized coordinates, thereby minimizing the number of non-zero entries of the coefficient matrix that appears in the augmented Lagrangian formulation of the equations of motion of the flexible multibody systems. An alternate computational procedure based on Cholesky decomposition is also presented in this paper. This alternate procedure, which has the same computational advantages as the one based on the QR decomposition, leads to a square velocity transformation matrix. The computational procedures proposed in this investigation can be used for the treatment of large deformation problems in flexible multibody systems. They have also the advantages of the algorithms based on the floating frame of reference formulations since they allow for easy addition of general nonlinear constraint and force functions.  相似文献   

12.
In this paper, a general damping system is transformed into an equivalent undamped system according to the transformation of general coordinates for a matrix function. The necessary and sufficient conditions for the transformability are presented, which become, after supplementing another condition as suggested, the conditions for decoupling the damping matrix of a general damping vibration system. So the Caughey's condition is insufficient for determining if a damping matrix of a general system can be decoupled.  相似文献   

13.
The structural theory of short-term microdamage is generalized to a laminated composite with a microdamageable matrix and physically nonlinear reinforcement. The basis for the generalization is the stochastic elasticity equations of a laminated composite with a porous matrix. Microvolumes in the matrix material meet the Huber-Mises failure criterion. The damaged-microvolume balance equation for the matrix is derived. This equation and the equations relating macrostresses and macrostrains of a laminated composite with porous matrix and physically nonlinear reinforcement constitute a closed-form system of equations. This system describes the coupled processes of physically nonlinear deformation and microdamage occurring in different composite components. Algorithms for computing the microdamage-macrostrain relationships and deformation diagrams are developed. Uniaxial tension curves are plotted for a laminated composite with linearly hardening reinforcement __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 11, pp. 47–56, November 2005.  相似文献   

14.
The Mehler–Fock transformation method is used to study the rolling of a rigid cylinder over a half-plane with initial stresses. The problem is reduced to a system of two dual integral equations, which are then reduced to a system of two integral Fredholm equations of the second kind. The system of integral equations is solved by the method of degenerate kernels. The dependences of the normal and tangential stresses on the elongation are plotted.  相似文献   

15.
In this study a new procedure for analysis of nonlinear dynamical systems with periodically varying parameters under critical conditions is presented through an application of the Liapunov-Floquet (L-F) transformation. The L-F transformation is obtained by computing the state transition matrix associated with the linear part of the problem. The elements of the state transition matrix are expressed in terms of Chebyshev polynomials in timet which is suitable for algebraic manipulations. Application of Floquet theory and the eigen-analysis of the state transition matrix at the end of one principal period provides the L-F transformation matrix in terms of the Chebyshev polynomials. Since this is a periodic matrix, the L-F transformation matrix has a Fourier representation. It is well known that such a transformation converts a linear periodic system into a linear time-invariant one. When applied to quasi-linear equations with periodic coefficients, a dynamically similar system is obtained whose linear part is time-invariant and the nonlinear part consists of coefficients which are periodic. Due to this property of the L-F transformation, a periodic orbit in original coordinates will have a fixed point representation in the transformed coordinates. In this study, the bifurcation analysis of the transformed equations, obtained after the application of the L-F transformation, is conducted by employingtime-dependent center manifold reduction andtime-dependent normal form theory. The above procedures are analogous to existing methods that are employed in the study of bifurcations of autonomous systems. For the two physical examples considered, the three generic codimension one bifurcations namely, Hopf, flip and fold bifurcations are analyzed. In the first example, the primary bifurcations of a parametrically excited single degree of freedom pendulum is studied. As a second example, a double inverted pendulum subjected to a periodic loading which undergoes Hopf or flip bifurcation is analyzed. The methodology is semi-analytic in nature and provides quantitative measure of stability when compared to point mappings method. Furthermore, the technique is applicable also to those systems where the periodic term of the linear part does not contain a small parameter which is certainly not the case with perturbation or averaging methods. The conclusions of the study are substantiated by numerical simulations. It is believed that analysis of this nature has been reported for the first time for this class of systems.  相似文献   

16.
A state-space approach for exact analysis of axisymmetric deformation and stress distribution in a circular cylindrical body of transversely isotropic material is developed. By means of Hamiltonian variational formulation via Legendre’s transformation, the basic equations in cylindrical coordinates are formulated into a state-space framework in which the unknown state vector comprises the displacements and associated stress components as the dual variables and the system matrix possesses the symplectic characteristics of a Hamiltonian system. Upon delineating the symplecticity of the formulation, a viable solution approach using eigenfunction expansion is developed. For illustration, an exact analysis of a finite thick-walled circular cylinder under internal and external pressures is presented, with emphasis on the end effects.  相似文献   

17.
With the aid of the variational method and Laplace transformation, the symplectic system method is employed into two-dimensional elastic–viscoelastic fiber reinforced composites. The fundamental eigenfunctions of the governing equations are generalized to the time domain. Therefore the problem can be discussed directly in the time domain, and the iterative application of Laplace transformation is not needed. Using this method, all the stress components of the inner fiber and outer matrix, and hence the stress transfer in the interface between the fiber and matrix, are expressed analytically. The results obtained by the approach are accurate, because all the boundary conditions prescribed on the surfaces and ends of the composites can be satisfied. Numerical example demonstrate that both the shear stress and the normal stress decrease with time due to the viscoelastic property of the matrix, and that stress concentration occurs near the end.  相似文献   

18.
针对各向同性材料,基于一组相互正交的基张量,建立了一套有 效的相关运算方法. 基张量中的两个分别是归一化的二阶单位张量和偏应力张量,另一个则 使用应力的各向同性二阶张量值函数经过归一化构造所得,三者共主轴. 根据张量函数表示 定理,本构方程和返回映射算法中所涉及到的应力的二阶、四阶张量值函数及其逆都由这组 基所表示. 推演结果表明:这些张量之间的运算,表现为对应系数矩阵之间的简单 关系. 其中,四阶张量求逆归结为对应的3\times3系数矩阵求逆,它对二阶张量的变换 则表现为该矩阵对3times 1列阵的变换. 最后,对这些变换关系应用于返回映 射算法的迭代格式进行了相关讨论.  相似文献   

19.
An inclusion is a special region in a material, and this region experiences a transformation of the following nature. If the inclusion were free, then it would acquire a certain deformation with no stress arising in it; but since the inclusion is “pasted” into the material, this prevents free deformations and causes stresses arising in the inclusion itself and in the environment. Three systems of equations describing the problem are derived. For a space with a homogeneous isotropic matrix, an equivalent system of integral equations is obtained whose solution, for a homogeneous anisotropic ellipsoidal inclusion, is reduced to a system of linear algebraic equations. For the case where the moduli of elasticity in the inclusion and the homogeneous matrix coincide, an explicit solution for an inclusion of arbitrary shape is obtained.  相似文献   

20.
Two dimensional equations of steady motion for third order fluids are expressed in a special coordinate system generated by the potential flow corresponding to an inviscid fluid. For the inviscid flow around an arbitrary object, the streamlines are the phicoordinates and velocity potential lines are psi-coordinates which form an orthogonal curvilinear set of coordinates. The outcome, boundary layer equations, is then shown to be independent of the body shape immersed into the flow. As a first approximation, assumption that second grade terms are negligible compared to viscous and third grade terms. Second grade terms spoil scaling transformation which is only transformation leading to similarity solutions for third grade fluid. By ~sing Lie group methods, infinitesimal generators of boundary layer equations are calculated. The equations are transformed into an ordinary differential system. Numerical solutions of outcoming nonlinear differential equations are found by using combination of a Runge-Kutta algorithm and shooting technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号