首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of a continuous wave (CW), thermoelectrically cooled (TEC), distributed feedback (DFB) laser diode based spectroscopic trace-gas sensor for ultra-sensitive and selective ethane (C2H6) concentration measurements is reported. The sensor platform used tunable diode laser absorption spectroscopy (TDLAS) based on a 2f wavelength modulation (WM) detection technique. TDLAS was performed with a 100 m optical path length astigmatic Herriott cell. For an interference free C2H6 absorption line located at 2976.8 cm−1 a 1σ minimum detection limit of 240 pptv (part per trillion by volume) with a 1 second lock-in amplifier time constant was achieved. In addition, reliable and long-term sensor performance was obtained when operating the sensor in an absorption line locked mode.  相似文献   

2.
A tunable diode laser absorption spectroscopy (TDLAS) technique and appropriate instrumentation was developed for the measurement of temperature and water vapor concentrations in heated gases. The technique is based on the detection of the spectra of H2O absorption lines with different energies of low levels. The following absorption lines of H2O were used: 7189.344 cm−1 (E″=142 cm−1), 7189.541 cm−1 (E″=1255 cm−1), 7189.715 cm−1 (E″=2005 cm−1). Spectra were recorded using fast frequency scanning of a single distributed feedback (DFB) laser. A unique differential scheme for the recording of the absorption spectra was developed. An optimal technique for fitting the experimental spectra was developed.  相似文献   

3.
A distributed feedback (DFB) laser diode emitting at 785 nm was tested and applied as a light source for shifted excitation Raman difference spectroscopy (SERDS). Due to the physical properties of the laser diode, it was possible to shift the emission wavelength by 8 cm-1 (0.5 nm) required for our SERDS measurements by simply changing the injection current. The internal grating ensured single mode operation at both wavelength with the frequency stability of ±0.06 cm-1 (0.004 nm) required for high resolution Raman spectroscopic applications. The shifted spectra were used for calculating enhanced Raman spectra being obscured by a strong scattering background. A 16 dB (≈38 fold) improvement of the signal-to-background noise S̄/σB was demonstrated using blackboard chalk as a sample. The tunable DFB laser is a versatile excitation source for SERDS, which could be used in any dispersive Raman system to subtract fluorescence contributions and scattering background. PACS 82.80.Gk; 42.55.-f; 42.64.Fi  相似文献   

4.
Water vapor overtones pressure line broadening and shifting measurements   总被引:2,自引:0,他引:2  
By using a spectrometer having as source a commercial etherostructure Al x Ga1 − x As diode laser operating in “free-running mode”, line shape parameters of some water vapor ro-vibrational overtones at 820–830 nm have been measured at room temperature. These weak absorption lines have been detected by using the wavelength modulation spectroscopy technique with second-harmonic detection. The broadening and shifting coefficients have been obtained by fitting the collected second-harmonic absorption features while varying the pressure of different foreign gases.  相似文献   

5.
The measurement of relative intensities in CO2 combination bands spectrum is performed using wavelength modulation spectroscopy (WMS) and a DFB (distributed feedback) diode laser operating at 1.6 μm. The diode laser is stabilized with an external Fabry–Pérot interferometer and absorption spectroscopy is performed in a multipass gas cell. A spectrum containing spectral lines of both 13CO2 and 12CO2 isotopic species is recorded. The variation of laser power during frequency scanning and the line shape are taken into account to accurately extract line intensities from experimental data. The isotopic concentration ratio is deduced from the intensity ratio. Both ratios are measured with an accuracy of about 0.5% in pure CO2. Received: 9 June 2000 / Published online: 8 November 2000  相似文献   

6.
Tunable diode laser based gas detectors are now being used in a wide variety of applications for safety and environmental interest. A fiber-distributed multi-channel open-path H2S sensor based on tunable diode laser absorption spectroscopy (TDLAS) is developed, the laser used is a telecommunication near infrared distributed feed-back (DFB) tunable diode laser, combining with wavelength modulation specby combining optical fiber technique. An on-board reference cell provides on-line sensor calibration and almost maintenance-free operation. The sensor is suitable for large area field H2S monitoring application.  相似文献   

7.
The three thermal rate equations were built newly up at both ends and at the junction of a pn diode, in order to derive analytically the temperature difference ΔT (between a junction and both ends) and the internal cooling efficiency η defined newly for a homojunction diode. The maxima ΔT and η of a diode were derived analytically as a function of V j within the short-length approximation and calculated numerically as a function of V j or V bi, where V j is a voltage across the junction and V bi is a built-in voltage at the junction. As a result, ΔT increases abruptly with an increase of V j below V j=0.050 V or of V bi below V bi=0.10 V, while above their values, it increases slowly with an increase of V j or V bi to saturate a certain value. For example, ΔT was estimated as 14.6 K for Hg0.8Cd0.2Te diode with V bi=0.36 V. η has a local maximum of 63% at V j≈0.01 V or at V bi≈0.03 V, while above their respective values, it decreases abruptly with an increase of V j or V bi and falls to 4.4% at V bi=0.80 V which is equivalent to that of a diode emitting a laser for fiber optical communication. However, the greater enhancements in ΔT and η of a diode are required to apply the internal cooling system to a laser-emitting diode which needs the exact control of temperature. These results should be useful for the application of the internal cooling system to the double heterojunction diode used in the optical communication.  相似文献   

8.
A tunable diode laser photoacoustic setup based on a recently demonstrated cantilever technique was used for sensitive detection of oxygen. As light sources, we used a distributed feedback (DFB) diode laser and a vertical-cavity surface-emitting (VCSEL) laser, both operating near 760 nm. With the 30 mW DFB laser a noise-equivalent detection limit of 20 ppm for oxygen was obtained, while a detection limit of 5 ‰ was achieved with the VCSEL having an output power of 0.5 mW. Our results yield a noise-equivalent sensitivity of 4.8×10-9 cm-1W Hz-1/2 and demonstrate the potential of this technique for compact and sensitive measurement of oxygen. PACS 42.62.Fi; 42.55.Px; 82.80.Kq  相似文献   

9.
Summary The p P(k=9) magnetic-dipole transition of the oxygen 0-0 vibrational band of the red systemb 1Σ g +X 3Σ g was observed with absorption spectroscopy using a tunable CW diode laser. A systematic investigation of the self-collisional broadening was performed for different gas pressures and temperatures. The temperature dependence of the self-broadening coefficient was determined to beT −(1.02±0.05). Our results are of interest for collisional theory and as reference data in atmospheric monitoring applications. The authors of this paper have agreed to not receive the proofs for correction.  相似文献   

10.
The resultant local Seebeck coefficient α R (=α Sα T) at the interface of a thermoelement has not yet been measured, although it is an important factor governing the thermoelectric efficiency, where α S is the local Seebeck coefficient and α T is the one caused by the Thomson effect. It is shown in this paper that α S, α T, and α R of the p- and n-type Cu/Bi–Te/Cu composites are obtained analytically and experimentally on the assumption that the local temperature of the composite on which the temperature difference ΔT is imposed varies linearly with changes in position along the composite. They were indeed estimated as a function of position from the local experimental data of RIT, and V generated by applying an additional current of ±I to the composite, where R is the electrical resistance and ΔI is a current generated by the composite. As a result, it was found that the absolute values of α S at the hot interface of the p- and n-type composites are approximately 1.5 and 1.4 times higher than their lowest values in the middle region of the composite, respectively, while those of α T are less than 8% of α S all over the composite and are so small that the relation α Rα S can be held. We thus succeeded in measuring α R at the interfaces of the composite.  相似文献   

11.
A series of experiments are carried out by current modulating a tunable diode laser, and slowly ramping the wavelength to scan weak absorption lines in gases at pressures ranging from 2 to 60 Torr. A lock-in amplifier detects the second harmonic (2f) of the modulation frequency, and the experimental 2f signals are compared with theory. Detailed measurements are made on Lorentzian, Voigt, and Gaussian line profiles, over a wide range of modulation amplitudes. Excellent agreement between experiment and calculation is obtained in all cases. This quantitative understanding enables one to derive true lineshapes and linewidths of very weak absorption lines from measurements of 2f lineshapes only. Results are applicable to trace gas detection using tunable diode lasers, and to other areas of spectroscopy and magnetic resonance where harmonic detection techniques are routinely employed to monitor weak signals.This work was supported in part by the National Science and Engineering Research Council, Canada  相似文献   

12.
Physical mechanisms of magnetization reversal of multilayer magnetic nanofilms by laser radiation are examined and the experiments on the effect of the magnetic field and nanosecond and picosecond laser pulses on the conductivity of the Tb19Co5Fe76/Pr6O11/Tb22Co5Fe73 and Co80Fe20/Pr6O11/Co30Fe70 tunnel microcontacts are carried out. It is shown that with the help of such laser pulses, magnetization reversal of magnetic nanolayers is possible in a zero external magnetic field under the action of the spin current magnetic field, induced by the photon pressure of laser radiation, or the magnetic field generated by circularly polarized picosecond laser pulses. A relative change in the resistance upon the laser magnetization reversal of one of the nanolayers in the Co80Fe20/Pr6O11/Co30Fe70 microcontacts reaches a value of ΔR/R = 0.06 for T = 300 K and ΔR/R = 0.25 for T = 80 K, in the Tb19Co5Fe76/Pr6O11/Tb22Co5Fe73 microcontacts, ΔR/R = 0.3 for T = 300 K and ΔR/R = 0.7 for T = 80 K.  相似文献   

13.
Two methods for recovery of gas absorption line profiles are presented in this paper using photoacoustic spectroscopy and tunable diode laser spectroscopy (TDLS) with wavelength modulation (WM). A theoretical analysis based on Fourier coefficients is given in order to describe the various components that arise under simultaneous intensity and frequency modulation. The first method makes use of the residual amplitude modulation (RAM) signal which is always present in current modulation of distributed feedback (DFB) tunable diode lasers. The second method involves integration of a near-pure first harmonic derivative signal, separated from other distorting components by appropriate choice of the lock-in detection phase in the case of low modulation index. Good agreement is obtained with both methods between the experimental results and the theoretical simulation for the P17 absorption line of acetylene at 1535.39 nm but the second method gives a much improved accuracy and signal-to-noise ratio in lineshape recovery with photoacoustic spectroscopy.  相似文献   

14.
Wave-guided thin-film distributed-feedback (DFB) polymer lasers are fabricated by spin coating a PPV-derived semiconducting polymer, thianthrene-DOO-PPV, onto oxidised silicon wafers with corrugated second-order periodic gratings. The gratings are written by reactive ion beam etching. Laser action is achieved by transverse pumping with picosecond laser pulses (wavelength 347.15 nm, duration 35 ps). The DFB-laser surface emission and edge emission are analysed. Outside the grating region the polymer film is used for comparative wave-guided travelling wave laser (amplified spontaneous emission (ASE)) studies. The pump pulse threshold energy density for wave-guided DFB-laser action (4–9 μJ cm-2) is found to be approximately a factor of two lower than the threshold for wave-guided travelling wave laser action. The spectral width of the DFB laser (down to ΔλDFB≈0.07 nm) is considerably narrower than that of the travelling wave laser (ΔλTWL≈14 nm). The DFB-laser emission is highly linearly polarised transverse to the grating axis (TE mode). Only at high pump pulse energy densities does an additional weak TM mode build up. The surface-emitted DFB-laser radiation has a low divergence along the grating direction. For both the DFB lasers and the travelling wave lasers, gain saturation occurs at high excitation energy densities. Received: 7 January 2002 / Revised version: 15 February 2002 / Published online: 14 March 2002  相似文献   

15.
Time evolution of emission by carbon nanoparticles generated with a laser furnace technique was investigated with a high-speed video camera. Assuming blackbody radiation formula for small spherical particle, the internal temperature of these carbon nanoparticles was determined as a function of time delay (Δt) after laser vaporization. It was found that the internal temperature of them drastically decreased at Δt < 400μs through collision with the surrounding rare gas inside the furnace. On the other hand, in particular laser vaporization condition where yields of C60 and other higher fullerenes in the soot were found to be high, an increase in the blackbody emission intensity could be recognized for longer wavelength ( 660 < λ < 830 nm) at Δt > 400μs. This finding suggests that a certain exothermic process related to the formation of C60 and other higher fullerenes should occur at Δt > 400μs inside the furnace.  相似文献   

16.
We report the surface impedance (Z s ) measurements in high quality single crystals of Bi2Sr2CaCu2O8+y . At relatively low oxygen content, the change of the penetration depth, Δλ(T) ≡λ(T)-λ(0), of the pure single crystals exhibits linear temperature dependence both parallel to the CuO2 planes and in thec direction. In contrast to this behavior, by further oxygenation or 0.6% Zn substitution, theT-linear dependence is disrupted andT 2 dependence of Δλ is observed. We also found that 0.9% Ni-substitution induces no pairbreaking effect. The present results suggest that the low-lying excitation spectrum of quasiparticles depends on the carrier concentration and is easily changed by a small amount of Zn substitution.  相似文献   

17.
2 and two diode lasers as pump sources are presented. A single-mode Fabry–Pérot-type tunable diode laser (TDL) and an external-cavity diode laser (ECL) were combined to generate radiation in the mid-infrared region near 7.2 μm. With a TDL at a wavelength of approximately 1290 nm and an ECL emitting between 1504 and 1589 nm it was possible to carry out spectroscopic experiments concerning SO2 at five different phasematching points between 1350 and 1400 cm-1 by fixing the wavelength of one pump laser and tuning the wavelength of the other. With an input power of 8 mW for the single-mode Fabry–Pérot-type diode laser and 6 mW for the external-cavity laser an output power of about 10 nW was generated. Using the tuning capabilities of the external-cavity laser a spectral region up to 5 cm-1 could be covered within one scan. Measurements of SO2 absorption lines at low pressure demonstrate the high-resolution features of the spectrometer. Moreover, these data provide new direct experimental phasematching data for the rarely investigated spectral region at 7.2 μm. Received: 27 October 1997/Revised version: 8 May 1998  相似文献   

18.
We report the device characteristics of the metal–dielectric high-reflectivity (HR) coated 1.55 μm laterally coupled distributed feedback (DFB) laser with metal surface gratings by using holographic lithography. The HR coating films are composed of Au/Ti/SiO2. It provides a variety of advantages compared to the uncoated DFB laser on the same processed wafer while there is no degradation on current–voltage characteristics. For 3 μm wide and 300 μm long HR coated DFB laser, it exhibits a maximum output power of ∼17 mW and a threshold current of 14.2 mA at 20°C under continuous-wave mode. It is clear that the threshold current and slope efficiency are improved by 36% and 96%, respectively, due to the reduction of mirror loss. The metal–dielectric HR coating on one facet of DFB laser is found to have significantly increased characteristic temperature (i.e., T 0∼88 K). Furthermore, the stable single-mode operation with an increased single-mode suppression ratio was achieved.  相似文献   

19.
采用连续可调谐二极管半导体激光器为探测光源,以可调怀特型长光程多通池(46.36~1158.90m)作为吸收池,采用直接吸收的方法,探测了室温下1.65μm附近CH4分子的高分辨率吸收光谱。在6043.00~6053.72cm-1范围内探测了5组不同压力和光程下的吸收光谱,观测到了259条线新的CH4分子吸收谱线,实验数据用Gaussian线型进行拟合,得到了这些吸收谱线的线强、线位置以及线强的标准偏差值,并对光谱中难以分辨的吸收谱线进行了分析。探测得到的最小谱线线强是4.3×10-27cm-1·(molcule·cm-2)-1,吸收谱线线强大于3.0×10-24cm-1·(mol·cm-2)-1由于吸收饱和而未被处理,同时所测得的光谱也显示出CH4分子在1.65μm附近有非常丰富的弱吸收谱线和复杂的结构。文中所报道的吸收谱线都是HITRAN2004数据库中所未报道的,而且也未见有其他文献报道过。  相似文献   

20.
In this work, we propose a new approach to the computation of heat conductivity in nonlinear systems. The total heat conductivity process is decomposed into two parts: one part is an equilibrium process at the same temperature T of either end of the lattice, which does not transfer energy and the other is a nonequilibrium process at temperature ΔT of one end and a zero temperature of the opposite end of the lattice. This approach makes it possible to somewhat reduce the time of computation of heat conductivity at ΔT → 0. The threshold temperature T thr is found to behave as T thrN −3, where N is the lattice length. The threshold temperature conventionally separates two mechanisms of heat conductivity: at T < T thr, phonon heat conductivity is dominant; at T > T thr, the contribution of soliton heat conductivity increases with increasing temperature. The problem of the computation of heat conductivity in the limit ΔT → 0 reduces to the heat conductivity of a harmonic lattice with time-dependent bond rigidities determined by an equilibrium process at temperature T. An exact expression for the temperature dependence of sound velocity in a lattice with a β-FPU potential at T < 10 is derived. A numerical experiment confirmed the existence of solitons and breathers that correspond to a modified Korteweg-de Vries (KdV) equation. The problem of the quantitative contribution of solitons and breathers to heat conductivity requires further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号