首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 829 毫秒
1.
六边形Fourier谱方法   总被引:1,自引:0,他引:1  
首先,建立了晶格Fourier分析的一般理论,并具体研究了六边形区域上周期函数的数值逼近.在此基础上,提出了六边形区域上的椭圆型偏微分方程的周期问题求解的六边形Fourier谱方法,设计了相应谱格式快速实现算法,建立了Fourier谱方法的稳定性与收敛性理论.同方形区域上的经典Fourier谱方法一样,六边形Fourier谱方法可以充分利用快速Fourier变换,并具备了"无穷阶"的谱收敛速度.  相似文献   

2.
张莲珠 《数学研究》1998,31(4):437-441
六角系统是2-连通的平面图,其每个内部面都是单位正六边形.六角系统的完美匹配是化学中苯类芳烃体系的Kekule结构.一个六角系统H完美匹配Z—变换图Z(H)是一个图,它的顶点集是H的完匹配集,两个匹配相邻当且仅当它们的对称差是一个单位正六边形.本文用乘积图刻划了沙位六角系统Z—变换图的结构.  相似文献   

3.
如图1,O为△ABC的外心,AO、BO、CO的延长线分别交对边及O于D;、A。;E。、B;;Fl、c,,本文约定把六边形ACIBAICBI称为“thABC的外心圆内接六边形”,简称“外。O六边形”,若改国外。VO分别为西ABC的垂心H、重心G、内心I,则称类似的六边形分别为垂。v、重心、内心六边形.关于这类国内接六边形的面积笔者得到了如下定理.定理1非钝角三角形的外心六边形面积与其垂心六边形面积相等,且等于该三角形面积的2倍.定理2任意三角形的内心六边形面积和其重心六边形面积都不小于该三角形面积的2倍且内心六边形面积不小于重心…  相似文献   

4.
三组对边两两平行的凸六边形叫做平行六边形.本文给出平行六边形的又一新性质.  相似文献   

5.
平行六边形的一个新性质   总被引:1,自引:1,他引:0  
三组对边两两平行的凸六边形叫做平行六边形.本文给出平行六边形的一个新性质.  相似文献   

6.
运用特征中心差分方法来求解一类抛物型偏微分方程.通过对网格的不均匀剖分来离散方程,得到方程的特征中心差分格式.作了H1误差估计,给出了相应的定理.数值实验表明该方法对解此类问题是高效稳定的.  相似文献   

7.
一类无穷维Hamilton算子的半群生成定理   总被引:3,自引:0,他引:3  
研究了无穷维H am ilton算子生成C0半群的问题,得到了类无穷维H am ilton算子生成C0半群的一个充分条件.把结果应用在一类双曲型混合问题生成的无穷维H am ilton算子上,证明此类算子生成C0半群,并利用H ille-Y osida定理进一步说明了结果的正确性和有效性.另外,还给出了波动方程相应的无穷维H am ilton算子所生成的C0半群的具体表达式.  相似文献   

8.
陈菲 《数学通讯》2022,(19):56-58
从一道2022年华数之星研学试题出发,探究由正六边形衍生出来的各正六边形的面积的关系.  相似文献   

9.
给出了Banach空间列序压缩算子定义,讨论了此类算子不动点存在性问题和其在非线性H amm erste in型积分方程中的应用.  相似文献   

10.
大家知道 ,在“幻方”中 ,每行、每列及每条对角线上的各数加起来是同一个和数 .有一个名叫亚当斯的青年对幻方产生了兴趣 .他想 ,既然有正方形的“幻方” ,那么 ,能不能作出一个正六边形的“幻六边形”呢 ?图 1 “一层”六边形排列大约从 1 91 0年开始 ,他就开始研究这种“幻六边形” .他先研究的是一层的 :如右图 ,能否将 1 ,2 ,3,4,5 ,6 ,7这七个数填入七个正方边形中去 ,使每条线上加起来是同一个和数 ?图 2 “两层”六边形排列他很快就发现 :这样的填法是不存在的 :如果图中x y要和x z相等 ,就有 y =z ,但 1到 7中的每个数…  相似文献   

11.
The problem of determining the largest area a plane hexagon of unit diameter can have, raised some 20 years ago by H. Lenz, is settled. It is shown that such a hexagon is unique and has an area exceeding that of a regular hexagon of unit diameter by about 4%.  相似文献   

12.
本文首先通过在多面体区域上抬高维数的技巧给出了多元B形式中曲面的一般性定义.由此我们构造了平行四边形域上、正六边形域上和正八边形成上B形式的同次曲面格式,并给出了其基函数的递推公式和求导公式.同时我们也给出了正六边形域上插值角点的B形式同次曲面的表示式.  相似文献   

13.
A hexagon triple is a graph consisting of three triangles of the form (a, x, b), (b, y, c), and (c,z,a), where a, b, c, x, y, z are distinct. The triangle (a, b, c) is called the inside triangle and the triangles (a, x, b), (b,y,c), and (c, z, a) are called outside triangles. A 3k-fold hexagon triple system of order n is a pair (X, H), where H is an edge-disjoint collection of hexagon triples which partitions the edge set of 3kK n with vertex set X. Note that the outside triangles form a 3k-fold triple system. If the 3k-fold hexagon triple system (X, H) has the additional property that the inside triangles form a k-fold triple system, then (X, H) is said to be perfect. A covering of 3kK n with hexagon triples is a triple (X, H, P) such that: 1.3kK n has vertex set X. 2.P is a subset of EK n ) with vertex set X for some λ, and 3.H is an edge disjoint partition of E(3kK n )∪ P with hexagon triples. If P is as small as possible (X, H, P) is called a minimum covering of 3kK n with hexagon triples. If the inside triangles of the hexagon triples in H form a minimum covering of kK n with triangles, the covering is said to be perfect. A complete solution for the problem of constructing perfect 3k-fold hexagon triple system and perfect maximum packing of 3kK n with hexagon triples was given recently by the authors [2]. In this work, we give a complete solution of the problem of constructing perfect minimum covering of 3kK n with hexagon triples.  相似文献   

14.
Hirsch  Jack  Li  Kevin  Petty  Jackson  Xue  Christopher 《Geometriae Dedicata》2021,214(1):65-77
Geometriae Dedicata - The hexagon is the least-perimeter tile in the Euclidean plane. On hyperbolic surfaces, the isoperimetric problem differs for every given area. Cox conjectured that a regular...  相似文献   

15.
The hexaparagon     
A hexagon with each pair of opposite sides parallel to a side of a triangle will be called a hexaparagon for that triangle. One way to construct a hexaparagon for a given triangle ABC is to use as vertices the centroids P, Q, R, S, T, and U of the six non-overlapping sub-triangles formed by the three medians of triangle ABC. The perimeter of this hexaparagon is half the perimeter of triangle ABC. The ratio of the areas of triangle ABC to this hexaparagon is 36 to 13 and the lengths of the parallel sides are in the ratio 6 to 2 to 1. The vertices of this hexaparagon lie on an ellipse and, with a second type of hexaparagon introduced later, hexaparagons tile the plane.  相似文献   

16.
We define the notion of a translation ovoid in the classical generalized quadrangles and hexagons of order q, and we enumerate all known examples; translation spreads are defined dually. A modification of the known ovoids in the generalized hexagon H(q), q=32h+1, yields new ovoids of that hexagon. Dualizing and projecting along reguli, we obtain an alternative construction of the Roman ovoids due to Thas and Payne. Also, we construct a new translation spread in H(q) for any 1 mod 3, q odd, with the property that any projection along reguli yields the classical ovoid in the generalized quadrangle Q(4,q). Finally, we prove that for q odd, the new example is the only non-Hermitian translation spread in H(q) with the property that any projection along reguli yields the classical ovoid in Q(4,q).  相似文献   

17.
According to a theorem of L. Fejes Tóth [4], if non-crossing congruent copies of a convex disc K cover a convex hexagon H, then the density of the discs relative to H is at least area K/fK(6) where fK(6) denotes the maximum area of a hexagon contained in K. We say that a convex disc is r-fat if it is contained in a unit circle C and contains a concentric circle c of radius r. Recently, Heppes [7] showed that the above inequality holds without the non-crossing assumption if K is a 0.8561-fat ellipse. We show that the non-crossing assumption can be omitted if K is an r0-fat convex disc with r0 = 0.933 or an r1-fat ellipse with r1 = 0.741.  相似文献   

18.
The research in this paper was motivated by one of the most important open problems in the theory of generalized polygons, namely the existence problem for semi–finite thick generalized polygons. We show here that no semi–finite generalized hexagon of order (2, t) can have a subhexagon H of order 2. Such a subhexagon is necessarily isomorphic to the split Cayley generalized hexagon H(2) or its point–line dual H D (2). In fact, the employed techniques allow us to prove a stronger result. We show that every near hexagon \({\mathcal{S}}\) of order (2, t) which contains a generalized hexagon H of order 2 as an isometrically embedded subgeometry must be finite. Moreover, if \({H \cong H^{D}}\)(2) then \({\mathcal{S}}\) must also be a generalized hexagon, and consequently isomorphic to either H D (2) or the dual twisted triality hexagon T(2, 8).  相似文献   

19.
If Γ is a half-Moufang generalized hexagon, then Γ is Moufang. We also give a very short proof that a generalized hexagon admitting a split BN-pair is a Moufang hexagon. Supported by a Heisenberg-Stipendium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号