首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complexes of glyoxal (Gly), methylglyoxal (MGly), and diacetyl (DAc) with water have been studied using Fourier transform infrared (FTIR) matrix isolation spectroscopy and MP2 calculations with 6-311++G(2d,2p) basis set. The analysis of the experimental spectra of the Gly(MGly,DAc)/H2O/Ar matrixes indicates formation of one Gly...H2O complex, three MGly...H2O complexes, and two DAc...H2O ones. All the complexes are stabilized by the O-H...O(C) hydrogen bond between the water molecule and carbonyl oxygen as evidenced by the strong perturbation of the O-H, C=O stretching vibrations. The blue shift of the CH stretching vibration in the Gly...H2O complex and in two MGly...H2O ones suggests that these complexes are additionally stabilized by the improper C-H...O(H2) hydrogen bonding. The theoretical calculations confirm the experimental findings. They evidence the stability of three hydrogen-bonded Gly...H2O and DAc...H2O complexes and six MGly...H2O ones stabilized by the O-H...O(C) hydrogen bond. The calculated vibrational frequencies and geometrical parameters indicate that one DAc..H2O complexes, two Gly...H2O, and three MGly...H2O ones are additionally stabilized by the improper hydrogen bonding between the C-H group and water oxygen. The comparison of the theoretical frequencies with the experimental ones allowed us to attribute the calculated structures to the complexes present in the matrixes.  相似文献   

2.
The hydrogen bonding structures of room-temperature ionic liquids 1,3-dimethylimidazolium methyl sulfate and 1-butyl-3-methylimidazolium hexafluorophosphate have been studied by infrared spectroscopy. High-pressure infrared spectral profiles and theoretical calculations allow us to make a vibrational assignment of these compounds. The imidazolium C-H bands of 1,3-dimethylimidazolium methyl sulfate display anomalous non-monotonic pressure-induced frequency shifts. This discontinuity in frequency shift is related to enhanced C-H...O hydrogen bonding. This behavior is in contrast with the trend of blue shifts in frequency for the methyl C-H stretching mode at ca. 2960 cm(-1). Our results indicated that the imidazolium C-H groups are more favorable sites for hydrogen bonding than the methyl C-H groups in the pure 1,3-dimethylimidazolium methyl sulfate. Nevertheless, both methyl C-H and imidazolium C-H groups are favorable sites for C-H...O hydrogen bonding in a dilute 1,3-dimethylimidazolium methyl sulfate/D(2)O mixture. Hydrogen bond-like C-H...F interactions were observed between PF(6)(-) and H atoms on the alkyl side chains and imidazolium ring for 1-butyl-3-methylimidazolium hexafluorophosphate.  相似文献   

3.
Weak hydrogen bonding in uracil and 4-cyano-4'-ethynylbiphenyl, for which single-crystal diffraction structures reveal close CH...O=C and C[triple bond]CH...N[triple bond]C distances, is investigated in a study that combines the experimental determination of 1H, 13C, and 15N chemical shifts by magic-angle spinning (MAS) solid-state NMR with first-principles calculations using plane-wave basis sets. An optimized synthetic route, including the isolation and characterization of intermediates, to 4-cyano-4'-ethynylbiphenyl at natural abundance and with 13C[triple bond]13CH and 15N[triple bond]C labeling is described. The difference in chemical shifts calculated, on the one hand, for the full crystal structure and, on the other hand, for an isolated molecule depends on both intermolecular hydrogen bonding interactions and aromatic ring current effects. In this study, the two effects are separated computationally by, first, determining the difference in chemical shift between that calculated for a plane (uracil) or an isolated chain (4-cyano-4'-ethynylbiphenyl) and that calculated for an isolated molecule and by, second, calculating intraplane or intrachain nucleus-independent chemical shifts that quantify the ring current effects caused by neighboring molecules. For uracil, isolated molecule to plane changes in the 1H chemical shift of 2.0 and 2.2 ppm are determined for the CH protons involved in CH...O weak hydrogen bonding; this compares to changes of 5.1 and 5.4 ppm for the NH protons involved in conventional NH...O hydrogen bonding. A comparison of CH bond lengths for geometrically relaxed uracil molecules in the crystal structure and for geometrically relaxed isolated molecules reveals differences of no more than 0.002 A, which corresponds to changes in the calculated 1H chemical shifts of at most 0.1 ppm. For the C[triple bond]CH...N[triple bond]C weak hydrogen bonds in 4-cyano-4'-ethynylbiphenyl, the calculated molecule to chain changes are of similar magnitude but opposite sign for the donor 13C and acceptor 15N nuclei. In uracil and 4-cyano-4'-ethynylbiphenyl, the CH hydrogen-bonding donors are sp2 and sp hybridized, respectively; a comparison of the calculated changes in 1H chemical shift with those for the sp3 hybridized CH donors in maltose (Yates et al. J. Am. Chem. Soc. 2005, 127, 10216) reveals no marked dependence on hybridization for weak hydrogen-bonding strength.  相似文献   

4.
The anionic tripodal N-heterocyclic carbene (C3N2H3)3BH- first prepared by Fehlhammer, together with three neutral variants, (C3N2H3)3CH, (C3N2H3)3P, and (C3N2H3)3SiH, have been studied using quantum chemical methods. Isodesmic reactions are used to deduce that the phosphine-bridgehead species in particular has a large-resonance stabilization energy. All the podands undergo substantial conformational change on excitation to the lowest triplet electronic state, with effective localization of the excitation on one of the heterocyclic rings, dearomatizing it. On monoprotonation of the ground states, three of these species display intramolecular C-H...Ccarbene hydrogen bonding: The nature and strength of these interactions is explored using model (intermolecularly hydrogen-bonded) complexes, isodesmic reactions, and GIAO calculations of chemical shifts. One surprising result is that C-H...Ccarbene hydrogen bonds involving ethenic hydrogens can be almost as strong as those involving the imidazolium proton (first identified by Arduengo). The case of the monoprotonated carbon bridgehead species is in particular intriguing. It is stabilized by a competitive Ccarbene...N interaction of sufficient strength to override the C-H...Ccarbene bonding motif observed in the other structures.  相似文献   

5.
The equilibrium structures, binding energies, and vibrational spectra of the cyclic, hydrogen-bonded complexes formed between formaldehyde, H(2)CO, and hydrogen fluoride clusters, (HF)(1< or =n < or =4), are investigated by means of large-scale second-order M?ller-Plesset calculations with extended basis sets. All studied complexes exhibit marked blue shifts of the C-H stretching frequencies, exceeding 100 cm(-1) for n = 2-4. It is shown that these blue shifts are, however, only to a minor part caused by blue-shifting hydrogen bonding via C-H...F contacts. The major part arises due to the structural relaxation of the H(2)CO molecule under the formation of a strong C=O...H-F hydrogen bond which strengthens as n increases. The close correlation between the different structural parameters in the studied series of complexes is demonstrated, and the consequences for the frequency shifts in the complexes are pointed out, corroborating thus the suggestion of the primary role of the C=O...H-F hydrogen bonding for the C-H stretching frequency shifts. This particular behavior, that the appearance of an increasingly stronger blue shift of the C-H stretching frequencies is mainly induced by the formation of a progressively stronger C=O...H-F hydrogen bond in the series of H(2)CO...(HF)(1< or =n < or =4), complexes and only to a lesser degree by the formation of the so-called blue-shifting C-H...F hydrogen bond, is rationalized with the aid of selected sections of the intramolecular H(2)CO potential energy surface and by performing a variety of structural optimizations of the H(2)CO molecule embedded in external, differently oriented dipole electric fields, and also by invoking a simple analytical force-field model.  相似文献   

6.
The infrared spectra of molecular complexes containing chloroform (CHCl(3)) and Lewis bases (N(2), CO, H(2)O, and CH(3)CN) have been observed in an Ar matrix, and vibrational peaks for the 1:1 complexes have been assigned. The C-H stretching band of chloroform in the complexes showed a seamless transition from a blue shift (for N(2) and CO) to a red shift (H(2)O and CH(3)CN), in accord with the proton affinity of the base molecules. Density functional calculations predicted that the C-H··(σ-type lone pair) isomer is the most stable, which is consistent with the observed vibrational peak shift upon complex formation. The underlying mechanisms of the C-H hydrogen bond were explored using the topological properties of the electronic charge density and natural orbital analyses.  相似文献   

7.
The aromatic C-H...O hydrogen bonding within the series of the structurally relative indenone derivatives has been studied. The presence of the hydrogen bonds is corroborated by the large low-field chemical shifts of the protons involved in the hydrogen bond observed experimentally and reproduced by quantum mechanical calculations. Further confirmation is provided by analysis of the orbital overlap coefficients, (13)C NMR chemical shifts, and one-bond spin-spin coupling constants J((13)C-(1)H). The relationship between molecular geometry and (1)H NMR chemical shifts of involved protons has a complex nature, but the C-H...O distance is the principal factor.  相似文献   

8.
Fumaramide derivatives were analyzed in solution by (1)H NMR spectroscopy and in the solid state by X-ray crystallography in order to characterize the formation of CH...O interactions under each condition and to thereby serve as models for these interactions in peptide and protein structure. Solutions of fumaramides at 10 mM in CDCl(3) were titrated with DMSO-d(6), resulting in chemical shifts that moved downfield for the CH groups thought to participate in CH...O=S(CD(3))(2) hydrogen bonds concurrent with NH...O=S(CD(3))(2) hydrogen bonding. In this model, nonparticipating CH groups under the same conditions showed no significant change in chemical shifts between 0.0 and 1.0 M DMSO-d(6) and then moved upfield at higher DMSO-d(6) concentrations. At concentrations above 1.0 M DMSO-d(6), the directed CH...O=S(CD(3))(2) hydrogen bonds provide protection from random DMSO-d(6) contact and prevent the chemical shifts for participating CH groups from moving upfield beyond the original value observed in CDCl(3). X-ray crystal structures identified CH...O=C hydrogen bonds alongside intermolecular NH...O=C hydrogen bonding, a result that supports the solution (1)H NMR spectroscopy results. The solution and solid-state data therefore both provide evidence for the presence of CH...O hydrogen bonds formed concurrent with NH...O hydrogen bonding in these structures. The CH...O=C hydrogen bonds in the X-ray crystal structures are similar to those described for antiparallel beta-sheet structure observed in protein X-ray crystal structures.  相似文献   

9.
Hydration changes of poly(2-methoxyethyl vinyl ether) (PMOVE) synthesized via living cationic polymerization have been investigated during a temperature-responsive phase separation in water by using infrared spectroscopy. An aqueous PMOVE solution has lower critical solution temperatures (LCSTs) of 66 degrees C in H2O and 65 degrees C in D2O at approximately 15 wt %. During phase separation, the C-H stretching (nu(C-H)) bands of PMOVE shift downward (red shift). In particular, the IR band assigned to the antisymmetric stretching vibration of the terminal methyl groups exhibits a remarkably large red shift by 16 cm-1. The band also exhibits a red shift with increasing polymer concentration at T < Tp. Density functional theory (DFT) calculations of the models of hydrated PMOVE indicate that the shift is due mainly to the breaking of hydrogen bonds (H-bonds) between the oxygen of the methoxy groups and water and partially to the breaking of the CH...O H-bond to them.  相似文献   

10.
Simple complexes connected through C-H...S and C-H...N interactions are investigated: CH4...NH3, C2H4...NH3, C2H2...NH3, CH4...SH2, C2H4...SH2, and C2H2...SH2. Ab initio and DFT calculations are performed (SCF, MP2, B3LYP) using different basis sets up to the MP2/aug-cc-pVQZ//MP2/aug-cc-pVDZ level of approximation. The Bader theory is applied since MP2/6-311++G(d,p) wave functions are used to find and to characterize bond critical points in terms of electron densities and their Laplacians. The influence of hybridization on the properties of C-H...S and C-H...N systems is also studied showing that the strength of such interactions increases in the following order: C(sp3)-H...Y, C(sp2)-H...Y, C(sp)-H...Y, where Y = S, N--it is in line with the previous findings on C-H...O hydrogen bonds. The results also show that CH4...SH2 and C2H4...SH2 complexes should be rather classified as van der Waals interactions and not as hydrogen bonds. The frequency associated with the C-H stretch of C(sp3)-H...S is blue-shifted.  相似文献   

11.
Experimental evidence for intramolecular blue-shifting C-H...O hydrogen bonding is presented. Argon matrix-isolation infrared spectra of 1-methoxy-2-(dimethylamino)ethane exhibit a band at 3016.5 cm-1. Spectral behavior with annealing indicates that this band is assigned to the most stable conformer, trans-gauche-(trans|gauche'), with an intramolecular C-H...O hydrogen bond. Density functional calculations show that this band arises from the stretching vibration of the C-H bond participating in the formation of the C-H...O hydrogen bond. The C-H bond is shortened by 0.004 A, and the C-H stretching band is blue-shifted by at least 35 cm-1 on the formation of the hydrogen bond. The (C)H...O distance is calculated as 2.38 A, which is shorter than the corresponding van der Waals separation by 0.3 A.  相似文献   

12.
Very short C-H...O, N-H...O, and O-H...O hydrogen bonds have been generated utilizing the cyclic phosphate [CH2(6-t-Bu-4-Me-C6H2O)2]P(O)OH (1). X-ray structures of (i) 1 (unsolvated, two polymorphs), 1...EtOH, and 1...MeOH, (ii) [imidazolium](+)[CH2(6-t-Bu-4-Me-C6H2O)2PO2](-)...MeOH [2], (iii) [HNC5H4-N=N-C5H4NH](2+)[(CH2(6-t-Bu-4-Me-C6H2O)2PO2)2](2-)...4CH3CN...H2O [3], (v) [K, 18-crown-6](+)[(CH2(6-t-Bu-4-Me-C6H2O)2P(O)OH)(CH2(6-t-Bu-4-Me-C6H2O)2PO2)](-)...2THF [4], (vi) 1...cytosine...MeOH [5], (vii) 1...adenine...1/2MeOH [6], and (viii) 1...S-(-)-proline [7] have been determined. The phosphate 1 in both its forms is a hydrogen-bonded dimer with a short O-H...O distance of 2.481(2) [triclinic form] or 2.507(3) A [monoclinic form]. Compound 2 has a helical structure with a very short C-H...O hydrogen bond involving an imidazolyl C-H and methanol in addition to N-H...O hydrogen bonds. A helical motif is also seen in 5. In 3, an extremely short N-H...O hydrogen bond [N...O 2.558(4) A] is observed. Compounds 6 and 7 also exhibit short N-H...O hydrogen bonds. In 1...EtOH, a 12-membered hydrogen-bonded ring motif, with one of the shortest known O-H...O hydrogen bonds [O...O 2.368(4) A], is present. 1...MeOH is a similar dimer with a very short O(-H)...O bond [2.429(3) A]. In 4, the deprotonated phosphate (anion) and the parent acid are held together by a hydrogen bond on one side and a coordinate/covalent bond to potassium on the other; the O-H...O bond is symmetrical and very strong [O...O 2.397(3) A].  相似文献   

13.
It has been observed that the vibrational stretching frequency of a C-H covalent bond commonly shifts to the blue and suffers intensity loss, when the CH engages in a hydrogen bond. However, the shift does not always occur in this direction, and there are cases when a CH blue shift may be present even in the absence of a CH...O interaction. Ab initio quantum calculations are used to analyze the structure, and vibrational and NMR spectra of small model systems containing both conventional and CH...O H-bonds, and thereby identify patterns that unambiguously signal the presence of a CH...O interaction.  相似文献   

14.
The change in (1)H NMR chemical shifts upon hydrogen bonding was investigated using both experimental and theoretical methods. The (1)H NMR spectra of a number of phenols were recorded in CDCl(3) and DMSO solvents. For phenol, 2- and 4-cyanophenol and 2-nitrophenol the OH chemical shifts were measured as a function of concentration in CDCl(3). The plots were all linear with concentration, the gradients varying from 0.940 (phenol) to 7.85 (4-cyanophenol) ppm/M because of competing inter- and intramolecular hydrogen bonding. Ab initio calculations of a model acetone/phenol system showed that the OH shielding was linear with the H...O=C distance (R) for R < 2.1 A with a shielding coefficient of - 7.8 ppm/A and proportional to cos(2)phi where phi is the H...O=C--C dihedral angle. Other geometrical parameters had little effect. It was also found that the nuclear shielding profile is unrelated to the hydrogen bonding energy profile. The dependence of the OH chemical shift on the pi density on the oxygen atom was determined as ca 40 ppm/pi electron. This factor is similar to that for NH but four times the value for sp(2) hybridized carbon atoms. The introduction of these effects into the CHARGE programme allowed the calculation of the (1)H chemical shifts of the compounds studied. The CHARGE calculations were compared with those from the ACD database and from GIAO calculations. The CHARGE calculations were more accurate than other calculations both when all the shifts were considered and also when the OH shifts were excluded. The calculations from the ACD and GIAO approaches were reasonable when the OH shifts were excluded but not as good when all the shifts were considered. The poor treatment of the OH shifts in the GIAO calculations is very likely due to the lack of explicit solvent effects in these calculations.  相似文献   

15.
Infrared spectroscopy (IR) of formyl fluoride (HCOF) dimer is studied in low-temperature argon and krypton matrixes. New IR absorptions, ca. 17 cm(-1) blue shifted from the monomer C-H stretching fundamental, are assigned to the HCOF dimer. The MP2/6-311++G calculations were utilized to define structures and harmonic frequencies of various HCOF dimers. Among the four optimized structures, the dimer having two C-H...O hydrogen bonds possesses strongest intermolecular bonding. The calculated harmonic frequencies of this dimer structure are shifted from the monomer similarly as observed in the experiment. Thus, we suggest that the experimentally observed blue shifted C-H bands belong to the dimer with two C-H...O hydrogen bonds. This observation includes the HCOF dimer to the class of hydrogen bonded complexes showing blue shift in their vibrational energies.  相似文献   

16.
Quantum chemical calculations have been performed to study the hybridization effect in H(2)O-AuCH(2)CH(3), H(2)O-AuCHCH(2), and H(2)O-AuCCH dimers, and the cooperativity between the hydrogen bond and Au bonding in three trimers (T1, T2, and T3) composed of one AuCCH and two H(2)O molecules. With regard to the organic Au compounds, sp-hybridized AuCCH forms the strongest Au bonding, followed by sp(2) and then sp(3). The C-Au bond is elongated, and its elongation becomes larger with the increase of the s character in hybrid orbitals, whereas the corresponding stretch vibration displays a small blue shift. The positive cooperativity is present for the hydrogen bond and Au bonding in T1 and T2 trimers, whereas the negative cooperativity is found in T3 trimer. The results show that the hybridization effect and cooperative interaction in Au bonding are similar to those in hydrogen bonds. Additionally, an OH···Au hydrogen bond is suggested in T1 trimer.  相似文献   

17.
The structure of griseofulvic acid, C16H15ClO6, at 100 K has orthorhombic (P2(1)2(1)2) symmetry. It is of interest with respect to biological activity. The structure displays intermolecular O-H...O, C-H...O hydrogen bonding as well as week C-H...pi and pi...pi interactions. In strong acidic conditions the griseofulvin undergoes dimerization. The structure of dimerized griseofulvin, C34H32C12O12 x C2H6O x H2O, at 100 K has monoclinic (P2(1)) symmetry. The molecule crystallized as a solvate with one ethanol and one water molecule. The dimeric molecules form intermolecular O-H...O hydrogen bonds to solvents molecules only but they interact via week C-H...O, C-H...pi, C-Cl...pi and pi...pi interactions with other dimerized molecules.  相似文献   

18.
Protonated methane, CH(5)(+), is a key reactive intermediate in hydrocarbon chemistry and a borderline case for chemical structure theory, being the simplest example of hypercoordinated carbon. Early quantum mechanical calculations predicted that the properties of this species could not be associated with only one structure, because it presents serious limitations of the Born-Oppenheimer approximation. However, ab initio molecular dynamics and diffusion Monte Carlo calculations showed that the most populated structure could be pictured as a CH(3) tripod linked to a H(2) moiety. Despite this controversy, a model for the chemical bonds involved in this ion still lacks. Here we present a modern valence bond model for the electronic structure of CH(5)(+). The chemical bond scheme derived directly from our calculations pictures this ion as H(3)C...H(2)(+). The fluxionality can be seen as the result of a proton transfer between C-H bonds. A new insight on the vibrational bands at approximately 2400 and approximately 2700 cm(-1) is suggested. Our results show that the chemical bond model can be profitably applied to such intriguing systems.  相似文献   

19.
1 INTRODUCTION It has been known that the electron correlation energy of molecular systems was, and still is, one of the most serious bottleneck problems to the chemis- try accuracy of computational quantum chemistry. Since L鰓din[1] gave the definition …  相似文献   

20.
Using (51)V magic angle spinning solid-state NMR, SSNMR, spectroscopy and quantum chemical DFT calculations we have characterized the chemical shift and quadrupolar coupling parameters of a series of eight hydroxylamido vanadium(V) dipicolinate complexes of the general formula VO(dipic)(ONR1R2)(H2O) where R1 and R2 can be H, CH3, or CH2CH3. This class of vanadium compounds was chosen for investigation because of their seven-coordinate vanadium atom, a geometry for which there is limited (51)V SSNMR data. Furthermore, a systematic series of compounds with different electronic properties are available and allows for the effects of ligand substitution on the NMR parameters to be studied. The quadrupolar coupling constants, C(Q), are small, 3.0-3.9 MHz, but exhibit variations as a function of the ligand substitution. The chemical shift tensors in the solid state are sensitive to changes in both the hydroxylamide substituent and the dipic ligand, a sensitivity which is not observed for isotropic chemical shifts in solution. The chemical shift tensors span approximately 1000 ppm and are nearly axially symmetric. On the basis of DFT calculations of the chemical shift tensors, one of the largest contributors to the magnetic shielding anisotropy is an occupied molecular orbital with significant vanadium d(z)2 character along the V=O bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号