首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial fatty acid profiling is a well‐established technique for bacterial identification. Ten bacteria were analyzed using both positive‐ and negative‐ion modes with a modified matrix‐assisted laser desorption ionization mass spectrometry (MALDI MS) approach using CaO as a matrix replacement (metal oxide laser ionization MS (MOLI MS)). The results show that reproducible lipid cleavage similar to thermal in situ tetramethyl ammonium hydroxide saponification/derivatization had occurred. Principal component analysis showed that replicates from each organism grouped in a unique space. Cross validation (CV) of spectra from both ionization modes resulted in greater than 94% validation of the data. When CV results were compared for the two ionization modes, negative‐ion data produced a superior outcome. MOLI MS provides clinicians a rapid, reproducible and cost‐effective bacterial diagnostic tool. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
MALDI imaging and profiling mass spectrometry of proteins typically leads to the detection of a large number of peptides and small proteins but is much less successful for larger proteins: most ion signals correspond to proteins of m/z < 25,000. This is a severe limitation as many proteins, including cytokines, growth factors, enzymes, and receptors have molecular weights exceeding 25 kDa. The detector technology typically used for protein imaging, a microchannel plate, is not well suited to the detection of high m/z ions and is prone to detector saturation when analyzing complex mixtures. Here we report increased sensitivity for higher mass proteins by using the CovalX high mass HM1 detector (Zurich, Switzerland), which has been specifically designed for the detection of high mass ions and which is much less prone to detector saturation. The results demonstrate that a range of different sample preparation strategies enable higher mass proteins to be analyzed if the detector technology maintains high detection efficiency throughout the mass range. The detector enables proteins up to 70 kDa to be imaged, and proteins up to 110 kDa to be detected, directly from tissue, and indicates new directions by which the mass range amenable to MALDI imaging MS and MALDI profiling MS may be extended.  相似文献   

3.
Peptide profile of human acquired enamel pellicle using MALDI tandem MS   总被引:2,自引:0,他引:2  
The present study proposes a strategy for human in vivo acquired enamel pellicle (AEP) peptidome characterisation based on sequential extraction with guanidine and TFA followed by MALDI-TOF/TOF identification. Three different nanoscale analytical approaches were used: samples were subjected to tryptic digestion followed by nano-HPLC and mass spectrometry (MS and MS/MS) analysis. Undigested samples were analysed by LC-MS (both linear and reflector modes) and LC-MS/MS analysis, and samples were subjected to nano-HPLC followed by on-plate digestion and mass spectrometry (MS and MS/MS) analysis. The majority of the identifications corresponded to peptide/protein fragments of salivary protein, belonging to the classes: acidic PRPs, basic PRPs, statherin, cystatins S and SN and histatin 1 (all also identified in intact form). Overall, more than 90 peptides/proteins were identified. Results clearly show that peptides with acidic groups are enriched in the TFA fraction while peptides with no acidic or phosphate groups are prevalent on the guanidine extract. Also, phosphorylated peptides were observed mainly on the TFA fraction. Fragments present in the AEP show a predominance of cleavage points located at Arg, Tyr and Lys residues. Obtained data suggest that proteolytic activity could influence AEP formation and composition.  相似文献   

4.
A matrix‐assisted laser desorption/ionization time of flight/time of flight tandem mass spectrometer (MALDI TOF/TOF) has been used for high‐speed precursor/fragment ion transition image acquisition. High‐throughput analysis is facilitated by an Nd:YLF solid state laser capable of pulse repetition rates up to 5 kHz, a high digitizer acquisition rate (up to 50 pixels/s), and continuous laser raster sampling. MS/MS experiments are enabled through the use of a precision timed ion selector, second source acceleration, and a dedicated collision cell. Continuous raster sampling is shown here to facilitate rapid MS/MS ion image acquisition from thin tissue sections for the drug rifampicin and for a common kidney lipid, SM4s(d18:1/24:1). The ability to confirm the structural identity of an analyte as part of the MS/MS imaging experiment is an essential part of the analysis. Additionally, the increase in sensitivity and specificity afforded by an MS/MS approach is highly advantageous, especially when interrogating complex chemical environments such as those in biological tissues. Herein, we report continuous laser raster sampling TOF/TOF imaging methodologies which demonstrate 8 to 14‐fold increases in throughput compared with existing MS/MS instrumentation, an important advantage when imaging large areas on tissues. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
6.
A novel matrix assisted laser desorption/ionization (MALDI)-based mass spectrometric approach has been evaluated to rapidly analyze a custom designed PEGylated peptide that is 31 residues long and conjugated with 20 kDa linear polyethylene glycol (PEG) at the side chain of Lys. MALDI-TOF MS provided sufficiently high resolution to allow observation of each of the oligomers of the heterogeneous PEGylated peptide (m/Δm of ca. 500), while a typical ESI-MS spectrum of this molecule was extremely complex and unresolved. Reflector in-source decay (reISD) analysis using MALDI-TOF MS was attempted to identify the PEGylation site at intact molecular level without any sample treatment. An reISD spectrum of the free peptide was observed with abundant c-, y-, and [z + 2]-fragment ion series, whereas, in the fragmented PEGylated peptide, the fragment ion series were truncated at the residue where PEG was attached. Therefore, a direct comparison of these top-down reISD spectra suggested the location of the PEGylation site. Results from this study demonstrate a clear analytical utility of the ISD technique to characterize structural aspects of heterogeneous biomolecules.  相似文献   

7.
8.
9.
We have investigated the use of a Gaussian beam laser for MALDI Imaging Mass Spectrometry to provide a precisely defined laser spot of 5 μm diameter on target using a commercial MALDI TOF instrument originally designed to produce a 20 μm diameter laser beam spot at its smallest setting. A Gaussian beam laser was installed in the instrument in combination with an aspheric focusing lens. This ion source produced sharp ion images at 5 μm spatial resolution with signals of high intensity as shown for images from thin tissue sections of mouse brain.
Figure
?  相似文献   

10.
Different sample handling methods for hydrophobic proteins and peptides were evaluated in association with the utilization of a structured matrix-assisted laser/desorption ionization (MALDI) target for increased sensitivity. The fluorinated organic solvent hexafluoroisopropanol (HFIP) was used for the solubilization of both the full-length protein bacteriorhodopsin (BR) and a cyanogen bromide digest thereof, and compared to the performance of the non-ionic detergents octyl--d-glucopyranoside (OG), dodecyl--d-maltoside (DM), and Triton X-100. A concentrating effect was seen when using the structured MALDI plate for BR dissolved in all the different detergents, of which OG generated the best-quality spectra for the full-length integral membrane protein as well as for the hydrophobic peptides. However, the uneven analyte distribution obtained with the detergent preparations required selective and thus time-consuming acquisition of spectra. When instead HFIP was used as sample solvent, a tenfold increase in sensitivity was achieved for full-length BR. Addition of acids to the HFIP-solubilized sample, or to the MALDI matrix solution, improved the signals for a few of the peptides, while degrading the spectra of others. Consequently, the addition of acid could be used as a complementary sample preparation method for hydrophobic peptides. On-target washing to remove contaminants (e.g., salt) was performed, and a recrystallization protocol for signal improvement specifically suited for hydrophobic peptides is described. Results from digestion and solubilization in different micro centrifuge tubes were examined to determine the influence of different materials on the possible sample loss due to wall adhesion. Studies of sample solution storage times suggest immediate analysis after solubilization to obtain best results.  相似文献   

11.
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) has been used for the discovery of hundreds of novel cell to cell signaling peptides. Beyond its advantages of sensitivity and minimal sample preparation requirements, MALDI MS is attractive for biological analyses as high quality mass spectra may be obtained directly from specific locations within prepared tissue sections. However, due to the large quantity of salts present in physiological tissues, these mass spectra often contain many adducts of cationic salts such as sodium and potassium, in addition to the molecular ion [M + H]+. To reduce the presence of cation adducts in MALDI mass spectra obtained directly from tissues, we present a methodology that uses a slow condensation procedure to enable the formation of distinct regions of matrix/analyte crystals and cation (salt) crystals. Secondary ion mass spectrometric imaging suggests that the salts and MALDI matrix undergo a mutually exclusive crystallization process that results in the separation of the salts and matrix in the sample.  相似文献   

12.
A strategy for investigation of site-specific glycosylation of glycoproteins has been developed, based on peptide mass fingerprinting using matrix assisted laser desorption ionisation time of flight mass spectrometry (MALDI TOF MS). The glycoprotein is subjected to sequential digestion with a protease and glycan-specific endoglycosidases or with the glycan-specific endoglycosidases followed by the protease. Peptides with characteristic masses are detected for sequences containing glycosylated asparagine residues. By using a panel of three proteases, chymotrypsin, protease V8 and trypsin, and endoglycosidases F3 and H and peptide N-glycanase F, it was possible to monitor the state of glycosylation of all putative N-glycosylation sites on three glycoproteins. It was deduced that all potential N-glycosylation sites in human serum transferrin (two) and α1-antitrypsin (three) were occupied by non-fucosylated, biantennary, disialylated, complex glycans. In contrast, only four (asparagines 19, 59, 146 and 270) out of the five potential sites were glycosylated in recombinant human β-glucosylceramidase, with the site nearest the C-terminal (asparagine 462) being unoccupied. The glycans at each site consisted of a mixture of non-fucosylated and core α1–6 fucosylated oligomannose glycans (Man3 GlcNAc2), derived from the enzymic truncation of complex glycans.  相似文献   

13.
A simple and robust impulse-driven droplet deposition system was developed for off-line liquid chromatography matrix-assisted laser desorption ionization mass spectrometry (LC-MALDI MS). The system uses a solenoid operated with a pulsed voltage power supply to generate impulses that dislodge the hanging droplets from the LC outlet directly to a MALDI plate via a momentum transfer process. There is no contact between the LC outlet and the collection surface. The system is compatible with solvents of varying polarity and viscosity, and accommodates the use of hydrophobic and hydrophilic MALDI matrices. MALDI spots are produced on-line with the separation, and do not require further processing before MS analysis. It is shown that high quality MALDI spectra from 5 fmol of pyro-Glu-fibrinopeptide deposition after LC separation could be obtained using the device, indicating that there was no sample loss in the interface. To demonstrate the analytical performance of the system as a proteome analysis tool, a range of BSA digest concentrations covering about 3 orders of magnitude, from 5 fmol to 1 pmol, were analyzed by LC-MALDI quadrupole time-of-flight MS, yielding 6 and 57% amino acid sequence coverage, respectively. In addition, a complex protein mixture of an E. coli cell extract was tryptically digested and analyzed by LC-MALDI MS, resulting in the detection of a total of 409 unique peptides from 100 fractions of 15-s intervals.  相似文献   

14.
Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) techniques are continually being assessed with a view to improving the quality of information obtained from a given sample. A single tissue section will typically only be analyzed once by MALDI MSI and is then either used for histological staining or discarded. In this study, we explore the idea of repeat analysis of a single tissue section by MALDI MSI as a route toward improving sensitivity, structural characterization, and diversity of detected analyte classes. Repeat analysis of a single tissue section from a fresh frozen mouse brain is investigated with both α-cyano-4-hydroxycinnamic acid (CHCA) and para-nitroaniline (PNA). Repeat analysis is then applied to the acquisition of MALDI MSI and MALDI tandem mass spectrometry imaging employing collision induced dissociation (MS/MS imaging employing CID) from a formalin-fixed mouse brain section. Finally, both lipid and protein data are acquired from the same tissue section via repeat analysis utilizing CHCA, sinapinic acid (SA), and a tissue wash step. PNA was found to outperform CHCA as a matrix for repeat analysis; multiple lipids were identified using MS/MS imaging; both lipid and protein images were successfully acquired from a single tissue section.
Figure
Repeat analysis by MALDI MS imaging of a single tissue section is investigated with multiple matrices and tissue washes to provide increased molecular information from a single tissue section  相似文献   

15.
本文简述了运用基体辅助激光解吸电离质谱进行血液制品定性质量评价的方法,用此法能检出其他方法不能检出的痕量杂质蛋白。  相似文献   

16.
MALDI tissue profiling and imaging have become valuable tools for rapid, direct analysis of tissues to investigate spatial distributions of proteins, potentially leading to an enhanced understanding of the molecular basis of disease. Sample preparation methods developed to date for these techniques produce protein expression profiles from predominantly hydrophilic, soluble proteins. The ability to obtain information about the spatial distribution of integral membrane proteins is critical to more fully understand their role in physiological processes, including transport, adhesion, and signaling. In this article, a sample preparation method for direct tissue profiling of integral membrane proteins is presented. Spatially resolved profiles for the abundant lens membrane proteins aquaporin 0 (AQP0) and MP20, and the retinal membrane protein opsin, were obtained using this method. MALDI tissue profiling results were validated by analysis of dissected tissue prepared by traditional membrane protein processing methods. Furthermore, direct tissue profiling of lens membrane proteins revealed age related post-translational modifications, as well as a novel modification that had not been detected using conventional tissue homogenization methods.  相似文献   

17.
Isomeric triazine pesticides: prometryn (N,N′-bis(1-methylethyl)-6-(methylthio)-1,3,5-triazine-2,4-diamine) and terbutryn (N-(1,1-dimethylethyl)-N′-ethyl-6-(methylthio)-1,3,5-triazine-2,4-diamine) are quantitatively analyzed by matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) without prior separation. The total concentration of the pesticide isomers was quantified by ‘standard’ MALDI using simetryn as an internal standard, while the composition of the isomeric mixture was estimated using post-source decay (PSD) MALDI-MS. Prometryn and terbutryn generate different PSD-MALDI product ions, and a PSD fragment characteristic of each isomeric pesticide is used for quantification of the mixture. Specifically, the fragment at m/z=186 is used for quantification of terbutryn, while the fragment at m/z=200 is used for prometryn. Fast evaporation and dried droplet methods were employed in PSD-MALDI quantification, and linear signal response was obtained for both methods. However, the fast evaporation method showed better quantitative characteristics and a lower detection limit.  相似文献   

18.
Owing to its broad biological significance, the large-scale analysis of protein phosphorylation is more and more getting into the focus of proteomic research. Thousands of phosphopeptides can nowadays be identified using state-of-the-art tandem mass spectrometers in conjunction with sequence database searching, but localizing the phosphate group to a particular amino acid in the peptide sequence is often still difficult. Using 180 individually synthesized phosphopeptides with precisely known phosphorylation sites (p-sites), we have assessed the merits of the Mascot Delta Score (MD score) for the assignment of phosphorylation sites from tandem mass spectra (MS/MS) generated on four different matrix-assisted laser desorption ionization (MALDI) mass spectrometers including tandem time-of-flight (TOF/TOF), quadrupole time-of-flight, and ion trap mass analyzers. The results show that phosphorylation site identification is generally possible with false localization rates of about 10%. However, a comparison to previous work also revealed that phosphorylation site determination by MALDI MS/MS is less accurate than by ESI-MS/MS particularly if several and/or adjacent possible phosphorylation acceptor sites exist in a peptide sequence. We are making the tandem MS spectra and phosphopeptide collection available to the community so that scientists may adapt the MD scores reported here to their analytical environment and so that informatics developers may integrate the MD score into proteomic data analysis pipelines.  相似文献   

19.
A new sample preparation method for MALDI tissue imaging has been developed for the analysis of low molecular weight compounds that employs matrix pre-coated MALDI targets. Tissue sections need only to be transferred onto the pre-coated target before analysis for fast and easy sample preparation. Pre-coated targets have a homogenous matrix coating with uniform crystals of approximately 1–2 μm and do not require solvents that may lead to analyte delocalization within a tissue section. We report here the use of matrix pre-coated targets for imaging of lipids, peptides, and pharmaceuticals in tissues.  相似文献   

20.
Simple and efficient digestion of proteins, particularly hydrophobic membrane proteins, is of significance for comprehensive proteome analysis using the bottom-up approach. We report a microwave-assisted acid hydrolysis (MAAH) method for rapid protein degradation for peptide mass mapping and tandem mass spectrometric analysis of peptides for protein identification. It uses 25% trifluoroacetic acid (TFA) aqueous solution to dissolve or suspend proteins, followed by microwave irradiation for 10 min. This detergent-free method generates peptide mixtures that can be directly analyzed by liquid chromatography (LC) matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) without the need of extensive sample cleanup. LC-MALDI MS/MS analysis of the hydrolysate from 5 microg of a model transmembrane protein, bacteriorhodopsin, resulted in almost complete sequence coverage by the peptides detected, including the identification of two posttranslational modification sites. Cleavage of peptide bonds inside all seven transmembrane domains took place, generating peptides of sizes amenable to MS/MS to determine possible sequence errors or modifications within these domains. Cleavage specificity, such as glycine residue cleavage, was observed. Terminal peptides were found to be present in relatively high abundance in the hydrolysate, particularly when low concentrations of proteins were used for MAAH. It was shown that these peptides could still be detected from MAAH of bacteriorhodopsin at a protein concentration of 1 ng/microl or 37 fmol/microl. To evaluate the general applicability of this method, it was applied to identify proteins from a membrane protein enriched fraction of cell lysates of human breast cancer cell line MCF7. With one-dimensional LC-MALDI MS/MS, a total of 119 proteins, including 41 membrane-associated or membrane proteins containing one to 12 transmembrane domains, were identified by MS/MS database searching based on matches of at least two peptides to a protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号