首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
硅量子点的弯曲表面引起系统的对称性破缺, 致使某些表面键合在能带的带隙中形成局域电子态.计算结果表明:硅量子点的表面曲率不同形成的表面键合结合能和电子态分布明显不同. 例如, Si–O–Si桥键在曲率较大的表面键合能够在带隙中形成局域能级, 而在硅量子点曲率较小的近平台表面上键合不会形成任何局域态, 但此时的键合结合能较低. 用弯曲表面效应(CS)可以解释较小硅量子点的光致荧光光谱的红移现象. CS效应揭示了纳米物理中又一奇妙的特性. 实验证实, CS效应在带隙中形成的局域能级可以激活硅量子点发光. 关键词: 硅量子点 弯曲表面效应 表面键合 局域能级  相似文献   

2.
Stationary and transient photoluminescence of CdS quantum dots deposited on silicon substrates and carbon nanotubes is investigated. The photoluminescence spectrum of quantum dots on a silicon substrate is dominated by a band originating from electron transitions between the quantum-confinement levels in the dots. When the quantum dots are deposited on carbon nanotubes, the intensity of this band decreases significantly. Furthermore, the kinetics of the photoluminescence decay becomes faster, which brings evidence of an additional channel for the quantum-dot deexcitation. The analysis of the experimental data demonstrates that the Förster energy transfer from CdS quantum dots to carbon nanotubes is most probably responsible for this channel. The efficiency of this process exceeds 60%.  相似文献   

3.
The results of the calculation of electronic wave functions and spectra of electrons and holes in silicon quantum dots with a shallow impurity center of the donor type are presented. The fine splitting of energy levels induced by the Coulomb interaction of charge carriers with the donor and by the spin-orbit splitting in the valence band is obtained in the framework of the envelope function approximation. It is shown that the maximum removal of degeneracy is accomplished in the case of an asymmetric location of the donor inside the quantum dot when the directions of the donor radius vector do not coincide with the principal crystallographic directions.  相似文献   

4.
The Si L 2, 3 x-ray absorption near-edge structure (XANES) spectra of porous silicon nanomaterials and nanostructures with epitaxial silicon layers doped by erbium or containing germanium quantum dots are measured using synchrotron radiation for the first time. A model of photoluminescence in porous silicon is proposed on the basis of the results obtained. According to this model, the photoluminescence is caused by interband transitions between the energy levels of the crystalline phase and oxide phases covering silicon nanocrystals. The stresses generated in surface silicon nanolayers by Ge quantum dots or clusters with incorporated Er atoms are responsible for the fine structure of the spectra in the energy range of the conduction band edge and can stimulate luminescence in these nanostructures.  相似文献   

5.
We show nanomechanical force is useful to dynamically control the optical response of self-assembled quantum dots, giving a method to shift electron and heavy hole levels, interval of electron and heavy hole energy levels, and the emission wavelength of quantum dots (QDs). The strain, the electron energy levels, and heavy hole energy levels of InAs/GaAs(001) quantum dots with vertical nanomechanical force are investigated. Both the lattice mismatch and nanomechanical force are considered at the same time. The results show that the hydrostatic and the biaxial strains inside the QDs subjected to nanomechanical force vary with nanomechanical force. That gives the control for tailoring band gaps and optical response. Moreover, due to strain-modified energy, the band edge is also influenced by nanomechanical force. The nanomechanical force is shown to influence the band edge. As is well known, the band offset affects the electronic structure, which shows that the nanomechanical force is proven to be useful to tailor the emission wavelength of QDs. Our research helps to better understand how the nanomechanical force can be used to dynamically control the optics of quantum dots.  相似文献   

6.
采用射频和脉冲磁控共溅射法并结合快速光热退火法制备了含硅量子点的SiC_x薄膜.采用掠入射X射线衍射、喇曼光谱、紫外-可见-近红外分光光度计和透射电子显微镜对薄膜进行表征.研究了脉冲溅射功率对薄膜中硅量子点数量、尺寸、晶化率和薄膜光学带隙的影响.结果表明:当溅射功率从70 W增至100 W时,硅量子点数量增多,尺寸增至5.33nm,晶化率增至68.67%,而光学带隙则减至1.62eV;随着溅射功率进一步增至110 W时,硅量子点数量减少,尺寸减至5.12nm,晶化率降至55.13%,而光学带隙却增至2.23eV.在本实验条件下,最佳溅射功率为100 W.  相似文献   

7.
We present a comparative study of two different spectroscopic techniques in order to determine the valence band offset in CdTe/(CdMn)Te quantum wells. On the one hand the energy difference between heavy- and light-hole excitons as a function of the heavy-hole transition energy is employed. We determine a valence band offset of Qv=0.30 for CdTe/(CdMn)Te, which is valid in the whole range of investigated Mn-contents up to x=0.27. An alternative determination of the valence band potential height is based on the tuning of potential heights due to external magnetic fields in semimagnetic quantum wells. Analysing the Zeeman splitting of the heavy-hole exciton in CdTe/(CdMn)Te quantum wells with different Mn-contents, we demonstrate a significant decrease of the valence band offset with increasing Mn-content in the barrier. From the comparison of the two different spectroscopic methodes including published data, we conclude that the valence band offset derived from the Zeeman splitting in CdTe/(CdMn)Te quantum wells with high Mn-content is strongly underestimated.  相似文献   

8.
We present theoretically the Zeeman coupling and exchange-induced swap action in spin-based quantum dot quantum computer models in the presence of magnetic field. We study the valence and conduction band states in a double quantum dots made in diluted magnetic semiconductor. The latter have been proven to be very useful in building an all-semiconductor platform for spintronics. Due to a strong p–d exchange interaction in diluted magnetic semiconductor (Cd0.57Mn0.43Te), the relative contribution of this component is strongly affected by an external magnetic field, a feature that is absent in nonmagnetic double quantum dots. We determine the energy spectrum as a function of magnetic field within the Hund–Mulliken molecular-orbit approach and by including the Coulomb interaction. Since we show that the ground state of the two carriers confined in a vertically coupled quantum dots provide a possible realization for a gate of a quantum computer, the crossing between the lowest states, caused by the giant spin splitting, can be observed as a pronounced jump in the magnetization of small magnetic field amplitude. Finally, we determine the swap time as a function of magnetic field and the inter dot distance. We estimate quantitatively swap errors caused by the field, establishing that error correction would, in principle, be possible in the presence of nonuniform magnetic field in realistic structures.  相似文献   

9.
A curviform surface breaks the symmetrical shape of silicon quantum dots on which some bonds can produce localized electronic states in the bandgap. The calculation results show that the bonding energy and electronic states of silicon quantum dots are different on various curved surfaces, for example, a Si-O-Si bridge bond on curved surface provides localized levels in bandgap and its bonding energy is shallower than that on the facet. The red-shifting ofthe photoluminescence spectrum on smaller silicon quantum dots can be explained by the curved surface effect. Experiments demonstrate that silicon quantum dots are activated for emission due to the localized levels provided by the curved surface effect.  相似文献   

10.
We present time-resolved emission experiments of semiconductor quantum dots in silicon 3D inverse-woodpile photonic band gap crystals. A systematic study is made of crystals with a range of pore radii to tune the band gap relative to the emission frequency. The decay rates averaged over all dipole orientations are inhibited by a factor of 10 in the photonic band gap and enhanced up to 2× outside the gap, in agreement with theory. We discuss the effects of spatial inhomogeneity, nonradiative decay, and transition dipole orientations on the observed inhibition in the band gap.  相似文献   

11.
袁晓利  施毅  杨红官  卜惠明  吴军  赵波  张荣  郑有科 《物理学报》2000,49(10):2037-2040
利用频率依赖电容谱的测量,对于SiO2/硅量子点/SiO2/硅衬底隧 穿电容中硅量子点的荷电特征进行了研究.由于量子点的极小尺寸和良好的均匀性,室温下 在强反型区成功地观察到了与单电子隧穿相关的两个电容和电导共振峰,它们分别对应于硅 衬底导带上的电子与量子点中第一与第二个基态之间直接隧穿过程.实验数据分析给出了量 子点中的库仑荷电能,并进行了讨论. 关键词: 量子点 电容谱 库仑荷电能 直接隧穿  相似文献   

12.
The emission of silicon quantum dots is weak when their surface is passivated well. Oxygen or nitrogen on the surface of silicon quantum dots can break the passivation to form localized electronic states in the band gap to generate active centers where stronger emission occurs. From this point of view, we can build up radiative matter for emission. Emissions of various wavelengths can be obtained by controlling the surface bonds of silicon quantum dots. Our experimental results demonstrate that annealing is important in the treatment of the activation, and stimulated emissions at about 600 and 700 nm take place on active silicon quantum dots.  相似文献   

13.
The ionized dopants, working as quantum dots in silicon nanowires, exhibit potential advantages for the development of atomic-scale transistors. We investigate single electron tunneling through a phosphorus dopant induced quantum dots array in heavily n-doped junctionless nanowire transistors. Several subpeaks splittings in current oscillations are clearly observed due to the coupling of the quantum dots at the temperature of 6 K. The transport behaviors change from resonance tunneling to hoping conduction with increased temperature. The charging energy of the phosphorus donors is approximately 12.8 meV. This work helps clear the basic mechanism of electron transport through donor-induced quantum dots and electron transport properties in the heavily doped nanowire through dopant engineering.  相似文献   

14.
The crystal structure of new self-assembled InSb/AlAs and AlSb/AlAs quantum dots grown by molecularbeam epitaxy has been investigated by transmission electron microscopy. The theoretical calculations of the energy spectrum of the quantum dots have been supplemented by the experimental data on the steady-state and time-resolved photoluminescence spectroscopy. Deposition of 1.5 ML of InSb or AlSb on the AlAs surface carried out in the regime of atomic-layer epitaxy leads to the formation of pseudomorphically strained quantum dots composed of InAlSbAs and AlSbAs alloys, respectively. The quantum dots can have the type-I and type-II energy spectra depending on the composition of the alloy. The ground hole state in the quantum dot belongs to the heavy-hole band and the localization energy of holes is much higher than that of electrons. The ground electron state in the type-I quantum dots belongs to the indirect XXY valley of the conduction band of the alloy. The ground electron state in the type-II quantum dots belongs to the indirect X valley of the conduction band of the AlAs matrix.  相似文献   

15.
We present a photoluminescence (PL) study of Ge quantum dots embedded in Si. Two different types of recombination processes related to the Ge quantum dots are observed in temperature-dependent PL measurements. The Ge dot-related luminescence peak near 0.80 eV is ascribed to the spatially indirect recombination in the type-II band lineup, while a high-energy peak near 0.85 eV has its origin in the spatially direct recombination. A transition from the spatially indirect to the spatially direct recombination is observed as the temperature is increased. The PL dependence of the excitation power shows an upshift of the Ge quantum dot emission energy with increasing excitation power density. The blueshift is ascribed to band bending at the type-II Si/Ge interface at high carrier densities. Comparison is made with results derived from measurements on uncapped samples. For these uncapped samples, no energy shifts due to excitation power or temperatures are observed in contrast to the capped samples.  相似文献   

16.
一种纳米硅薄膜的传导机制   总被引:16,自引:1,他引:15       下载免费PDF全文
何宇亮  余明斌  胡根友  张蔷 《物理学报》1997,46(8):1636-1644
基于对实验和理论的分析,提出一种异质结量子点隧穿(HQD)模型,并导出了纳米硅薄膜电导率完整的表达式.其主要思想是,纳米硅薄膜中的微晶粒(几个纳米大小)具有量子点特征,在微晶粒与界面之间由于两者能隙的差异构成晶间势垒,这类似于多晶硅中经常使用的晶间势垒模型(GBT).考虑到量子点中的单电子隧穿特征,认为纳米硅薄膜中的电传导是由微晶粒中电子弹道式输运与单电子越过势垒的隧穿构成的.这就是HQD模型的主要内容,理论结果与实验相符 关键词:  相似文献   

17.
We provide an alternative means of electric field control for spin manipulation in the absence of magnetic fields by transporting quantum dots adiabatically in the plane of two-dimensional electron gas. We show that the spin splitting energy of moving quantum dots is possible due to the presence of quasi-Hamiltonian that might be implemented to make the next generation spintronic devices of post CMOS technology. Such spin splitting energy is highly dependent on the material properties of semiconductor. It turns out that this energy is in the range of meV and can be further enhanced with increasing pulse frequency. In particular, we show that quantum oscillations in phonon mediated spin-flip behaviors can be observed. We also confirm that no oscillations in spin-flip behaviors can be observed for the pure Rashba or pure Dresselhaus cases.  相似文献   

18.
Xing-Tao An 《Physics letters. A》2008,372(45):6790-6796
Spin polarization in parallel double quantum dots embedded in arms of Aharonov-Bohm interferometer is investigated. The spin-orbit interaction exists in quantum dots. We find that the spin polarization is quite large even with a weak spin-orbit interaction. The direction and the strength of the spin polarization are well controllable and manipulatable by simply varying the strength of spin-orbit interaction or the energy levels in quantum dots. Moreover, electron-electron interaction strengthens the spin accumulation when the energy levels of the two quantum dots are identical. As the energy levels are unequal, electron-electron interaction cannot increase the spin accumulation. It is worth mentioning that the device is free of a magnetic field or a ferromagnetic material and it can be easily realized with present technology.  相似文献   

19.
The electronic and optical properties of a number of single-layered silicon sheets are investigated using density functional calculations. The energy bands of silicon sheets are found to possess direct gaps and thus facilitate the material’s potential applications in optoelectronics. Bridging one-dimensional silicon chains and three-dimensional bulk silicon, two-dimensional single-layered silicon sheets present unique dimension and orientation dependencies of band structures and imaginary dielectric functions, which offer tunable band gaps and peaks in the dielectric functions associated with symmetry breaking and quantum confinement. Our study is expected to facilitate the understanding of general low-dimensional materials and their applications.  相似文献   

20.
We show that free-standing silicon quantum dots (QDs) can be photoactivated by blue or UV optical irradiation. The luminescence intensity increases by an order of magnitude for irradiation times of several minutes under moderate optical power. The cut-off energy for photoactivation is between 2.1 and 2.4 eV, not very different from the activation energy for hydrogen dissociation from bulk silicon surfaces. We propose the mechanism for this effect is associated with silicon-hydride bond breaking and the subsequent oxidation of dangling bonds. This phenomenon could be used to “write” luminescent quantum dots into pre-determined arrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号