首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The dynamic programming algorithm of [12.] for the bandwidth minimization problem is improved. It is shown that, for all k > 1, BANDWIDTH(k) can be solved in O(nk) steps and simultaneous O(nk) space, where n is the number of vertices in the graph, and that each such problem is in NSPACE(log n). The same improved dynamic programming algorithm approach works to show that the MINCUT LINEAR ARRANGEMENT problem restricted to the fixed value k, denoted by MINCUT(k), is solvable in O(nk) steps and simultaneous O(nk) space and is in the class NSPACE(log n).  相似文献   

2.
The theoretical presentation and analysis is given for two families of simple in-place merging algorithms and their limiting cases. The first family merges stably inO(k·n) time andO(n 1/k ) additional space with a limiting case running inO(n logn) time and constant space. The second family merges unstably inO (k ·n) time andO(log k n) space with a limiting case running inO(nG(n)) time and constant space. HereG(n) is the leastk such thatF(k) n whereF(0)=1 andF(i)=2 F(i–1) fori1. Each algorithm gives rise to a corresponding merge sort.  相似文献   

3.
We present an efficient algorithm for finding a sparse k-edge-connectivity certificate of a multigraph G. Our algorithm runs in O((log kn)(log k)2(log n)2) time using O(k(n + m′)) processors on an ARBITRARY CRCW PRAM, where n and m′ stand for the numbers of vertices in G and edges in the simplified graph of G, respectively.  相似文献   

4.
Faster Subtree Isomorphism   总被引:2,自引:0,他引:2  
We study the subtree isomorphism problem: Given trees H and G, find a subtree of G which is isomorphic to H or decide that there is no such subtree. We give an O((k1.5/log k)n)-time algorithm for this problem, where k and n are the number of vertices in H and G, respectively. This improves over the O(k1.5n) algorithms of Chung and Matula. We also give a randomized (Las Vegas) O(k1.376n)-time algorithm for the decision problem.  相似文献   

5.
A new duality between order-k Voronoi diagrams inE d and convex hulls inE d+1 is established. It implies a reasonably simple algorithm for computing the order-k diagram forn points in the plane inO(k 2 n logn) time and optimalO(k(n–k)) space.Research was supported by the Austrian Fond zur Foerderung der wissenschaftlichen Forschung.  相似文献   

6.
We obtain the first NC algorithm for the low-diameter graph decomposition problem on arbitrary graphs. Our algorithm runs in O(log5(n)) time, and uses O(n2) processors. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
We address the problem of computing homotopic shortest paths in the presence of obstacles in the plane. Problems on homotopy of paths received attention very recently [Cabello et al., in: Proc. 18th Annu. ACM Sympos. Comput. Geom., 2002, pp. 160–169; Efrat et al., in: Proc. 10th Annu. European Sympos. Algorithms, 2002, pp. 411–423]. We present two output-sensitive algorithms, for simple paths and non-simple paths. The algorithm for simple paths improves the previous algorithm [Efrat et al., in: Proc. 10th Annu. European Sympos. Algorithms, 2002, pp. 411–423]. The algorithm for non-simple paths achieves O(log2n) time per output vertex which is an improvement by a factor of O(n/log2n) of the previous algorithm [Hershberger, Snoeyink, Comput. Geom. Theory Appl. 4 (1994) 63–98], where n is the number of obstacles. The running time has an overhead O(n2+) for any positive constant . In the case k<n2+, where k is the total size of the input and output, we improve the running to O((n+k+(nk)2/3)logO(1)n).  相似文献   

8.
We give a very short proof of an Erd?s conjecture that the number of edges in a non‐2‐colorable n‐uniform hypergraph is at least f(n)2n, where f(n) goes to infinity. Originally it was solved by József Beck in 1977, showing that f(n) at least clog n. With an ingenious recoloring idea he later proved that f(n) ≥ cn1/3+o(1). Here we prove a weaker bound on f(n), namely f(n) ≥ cn1/4. Instead of recoloring a random coloring, we take the ground set in random order and use a greedy algorithm to color. The same technique works for getting bounds on k‐colorability. It is also possible to combine this idea with the Lovász Local Lemma, reproving some known results for sparse hypergraphs (e.g., the n‐uniform, n‐regular hypergraphs are 2‐colorable if n ≥ 8). © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

9.
Motivated by the gateway placement problem in wireless networks, we consider the geometric k-centre problem on unit disc graphs: given a set of points P in the plane, find a set F of k points in the plane that minimizes the maximum graph distance from any vertex in P to the nearest vertex in F in the unit disc graph induced by PF. We show that the vertex 1-centre provides a 7-approximation of the geometric 1-centre and that a vertex k-centre provides a 13-approximation of the geometric k-centre, resulting in an O(kn)-time 26-approximation algorithm. We describe O(n2m)-time and O(n3)-time algorithms, respectively, for finding exact and approximate geometric 1-centres, and an O(mn2k)-time algorithm for finding a geometric k-centre for any fixed k. We show that the problem is NP-hard when k is an arbitrary input parameter. Finally, we describe an O(n)-time algorithm for finding a geometric k-centre in one dimension.  相似文献   

10.
Optimally Cutting a Surface into a Disk   总被引:1,自引:0,他引:1  
We consider the problem of cutting a subset of the edges of a polyhedral manifold surface, possibly with boundary, to obtain a single topological disk, minimizing either the total number of cut edges or their total length. We show that this problem is NP-hard in general, even for manifolds without boundary and for punctured spheres. We also describe an algorithm with running time n O(g+k), where n is the combinatorial complexity, g is the genus, and k is the number of boundary components of the input surface. Finally, we describe a greedy algorithm that outputs a O(log2 g)-approximation of the minimum cut graph in O(g 2 n log n) time.  相似文献   

11.
We prove a variant of a Johnson‐Lindenstrauss lemma for matrices with circulant structure. This approach allows to minimize the randomness used, is easy to implement and provides good running times. The price to be paid is the higher dimension of the target space k = O?2 log3 n) instead of the classical bound k = O?2 log n). © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011  相似文献   

12.
We consider the minimum-cost λ-assignment problem, which is equivalent to the minimum-weight one-to-many matching problem on a complete bipartite graph Γ = (A, B), where A and B have n and k nodes (n ? k), respectively. Formulating the problem geometrically, we given an O(kn + k2.5n0.5 log1.5 n) time randomized algorithm, which is better than the existing O(kn2 + n2 log n) time algorithm if n > k log k.  相似文献   

13.
Greedily Finding a Dense Subgraph   总被引:3,自引:0,他引:3  
Given an n-vertex graph with nonnegative edge weights and a positive integer k ≤ n, our goal is to find a k-vertex subgraph with the maximum weight. We study the following greedy algorithm for this problem: repeatedly remove a vertex with the minimum weighted-degree in the currently remaining graph, until exactly k vertices are left. We derive tight bounds on the worst case approximation ratio R of this greedy algorithm: (1/2 + n/2k)2 − O(n − 1/3) ≤ R ≤ (1/2 + n/2k)2 + O(1/n) for k in the range n/3 ≤ k ≤ n and 2(n/k − 1) − O(1/k) ≤ R ≤ 2(n/k − 1) + O(n/k2) for k < n/3. For k = n/2, for example, these bounds are 9/4 ± O(1/n), improving on naive lower and upper bounds of 2 and 4, respectively. The upper bound for general k compares well with currently the best (and much more complicated) approximation algorithm based on semidefinite programming.  相似文献   

14.
We present a new algorithm for the Hitchcock transportation problem. On instances with n sources and k sinks, our algorithm has a worst-case running time of O(nk2(logn+klogk)). It closes a gap between algorithms with running time linear in n but exponential in k and a polynomial-time algorithm with running time O(nk2log2n).  相似文献   

15.
1.IntroductionLetG=(V,E,W)beaconnected,weightedandundirectedgraph,VeEE,w(e)(相似文献   

16.
We consider the following two instances of the projective clustering problem: Given a set S of n points in and an integer k>0, cover S by k slabs (respectively d-cylinders) so that the maximum width of a slab (respectively the maximum diameter of a d-cylinder) is minimized. Let w* be the smallest value so that S can be covered by k slabs (respectively d-cylinders), each of width (respectively diameter) at most w*. This paper contains three main results: (i) For d=2, we present a randomized algorithm that computes O(klogk) strips of width at most w* that cover S. Its expected running time is O(nk2log4n) if k2logkn; for larger values of k, the expected running time is O(n2/3k8/3log14/3n). (ii) For d=3, a cover of S by O(klogk) slabs of width at most w* can be computed in expected time O(n3/2k9/4polylog(n)). (iii) We compute a cover of by O(dklogk) d-cylinders of diameter at most 8w* in expected time O(dnk3log4n). We also present a few extensions of this result.  相似文献   

17.
We give upper bounds for the size of 3-uniform hypergraphs avoiding a given odd cycle using the definition of a cycle due to Berge. In particular, we show that a 3-uniform hypergraph containing no cycle of length 2k+1 has less than 4k 4 n 1+1/k +O(n) edges. Constructions show that these bounds are best possible (up to constant factor) for k=1,2,3, 5.  相似文献   

18.
We propose a parallel algorithm which reduces the problem of computing Hamiltonian cycles in tournaments to the problem of computing Hamiltonian paths. The running time of our algorithm is O(log n) using O(n2/log n) processors on a CRCW PRAM, and O(log n log log n) on an EREW PRAM using O(n2/log n log log n) processors. As a corollary, we obtain a new parallel algorithm for computing Hamiltonian cycles in tournaments. This algorithm can be implemented in time O(log n) using O(n2/log n) processors in the CRCW model and in time O(log2n) with O(n2/log n log log n) processors in the EREW model.  相似文献   

19.
In this paper, we describe an algorithm to stably sort an array ofn elements using only a linear number of data movements and constant extra space, albeit in quadratic time. It was not known previously whether such an algorithm existed. When the input contains only a constant number of distinct values, we present a sequence ofin situ stable sorting algorithms makingO(n lg(k+1) n+kn) comparisons (lg(K) means lg iteratedk times and lg* the number of times the logarithm must be taken to give a result 0) andO(kn) data movements for any fixed valuek, culminating in one that makesO(n lg*n) comparisons and data movements. Stable versions of quicksort follow from these algorithms.Research supported by Natural Sciences and Engineering Research Council of Canada grant No.A-8237 and the Information Technology Research Centre of Ontario.Supported in part by a Research Initiation Grant from the Virginia Engineering Foundation.  相似文献   

20.
Lovász, Saks, and Trotter showed that there exists an on-line algorithm which will color any on-linek-colorable graph onn vertices withO(nlog(2k–3) n/log(2k–4) n) colors. Vishwanathan showed that at least (log k–1 n/k k ) colors are needed. While these remain the best known bounds, they give a distressingly weak approximation of the number of colors required. In this article we study the case of perfect graphs. We prove that there exists an on-line algorithm which will color any on-linek-colorable perfect graph onn vertices withn 10k/loglogn colors and that Vishwanathan's techniques can be slightly modified to show that his lower bound also holds for perfect graphs. This suggests that Vishwanathan's lower bound is far from tight in the general case.Research partially supported by Office of Naval Research grant N00014-90-J-1206.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号